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О проблеме существования билинейного
алгоритма сложности 17 для перемножения

матриц размеров 5 × 2 и 2 × 2
Алексеев Валерий Борисович, Назаров Андрей Александрович
Московский государственный университет имени М.В. Ломоносова;
vbalekseev@rambler.ru, nazarovandry2@mail.ru

Введение

Рассматривается задача о сложности умножения матрицы размера m× n на
матрицу размера n× p (задача 〈m,n, p〉).

Умножая все строки на все столбцы, получаем, что сложность стандартно-
го алгоритма имеет кубическую зависимость от порядка матрицы (m3 умно-
жений для матриц размера m ×m). В 1969 г. В. Штрассен [1] придумывает
алгоритм для умножения матриц 2 × 2 с 7 умножениями (вместо 8), благо-
даря чему сложность умножения матриц порядка m понижается с O(m3) до
O(mlog2 7). В 1986 г. Д. Копперсмит и С. Виноград [2] снизили сложность до
O(m2.38), после чего значительных улучшений не было.

С тем, чтобы лучше понять, как могут быть устроены быстрые алгоритмы
для умножения матриц порядка m, изучаются различные вопросы об опти-
мальных алгоритмах умножения матриц. Данная статья посвящена исследо-
ванию билинейной сложности умножения матриц размеров 5× 2 и 2× 2.

Постановка задачи

Определение. Билинейный алгоритм [1, 3] для задачи умножения мат-
рицы ||aij||m×n на матрицу ||bkh||n×p над полем F состоит в вычислении l
выражений вида

Dt =

(
m∑
i=1

n∑
j=1

atijxij

)(
n∑
k=1

p∑
h=1

btkhykh

)
, t = 1, l, (1)

таких, чтобы из них линейными комбинациями (c коэффициентами γtih)
можно было получить все билинейные формы

n∑
j=1

xijyjh =
l∑

t=1

γtihDt, i = 1,m, h = 1, p,

т. е. все элементы матрицы X · Y . Здесь xij и ykh рассматриваются как
независимые переменные, а коэффициенты atij, b

t
kh и γtuw (u = 1,m, w = 1, p)

берутся из F . Число l называется сложностью билинейного алгоритма,
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а минимально возможное l по всем билинейным алгоритмам для задачи
называется ее билинейной сложностью.

Известно, что билинейная сложность задачи 〈m,n, p〉 не меняется при лю-
бой перестановке чисел m, n и p [4, 5]. Точное значение билинейной слож-
ности задачи 〈m,n, p〉 известно для очень малого числа параметров. Легко
показать, что для задачи 〈m, 1, p〉 она равна mp. Над произвольным полем
доказано только, что для задачи 〈2, 2, 2〉 она равна 7 [1, 3], для задачи 〈2, 2, 3〉
она равна 11 [6], для задачи 〈2, 2, 4〉 она равна 14 [7], для задачи 〈2, 3, 3〉 она
равна 15 [8].

Итак, 〈5, 2, 2〉 = 〈2, 2, 5〉. Задачу умножения матрицы размера 2 × 2 на
матрицу размера 2 × 5 можно рассматривать как два умножения матрицы
размера 2 × 2 на матрицу размера 2 × 2 и одно умножение матрицы раз-
мера 2 × 2 на матрицу размера 2 × 1. Поскольку для перемножения двух
матриц размера 2 × 2 алгоритм Штрасена (он билинейный) имеет билиней-
ную сложность 7, а умножение матрицы размера 2 × 2 на матрицу размера
2×1 стандартным алгоритмом имеет билинейную сложность 4, то для задачи
〈2, 2, 5〉 получаем билинейный алгоритм сложности 18. С другой стороны, в
работе [9] доказано, что для задачи 〈2, 2, 5〉 не существует билинейного ал-
горитма сложности менее 17. Возникает вопрос: существует ли билинейный
алгоритм для 〈2, 2, 5〉 сложности 17?

Формулировка задачи в другом виде

Из (1) следует, что каждое Dt— билинейная форма от двух множеств пе-
ременных {xij} и {ykh}, причем эта форма разложима в произведение двух
линейных форм: первая от переменных {xij}, вторая от переменных {ykh}.
Нетрудно доказывается следующее утверждение.

Утверждение. Ненулевая билинейная форма
∑

ik xiyk представима в фор-
ме (

∑
i xi) · (

∑
k yk) тогда и только тогда, когда матрица этой билинейной

формы имеет ранг 1.

Определим пространство матриц M0 = Mmn×np = Mn×n(K), где блоки K
являются матрицами из Mm×p. Заметим, что билинейный алгоритм задается
коэфициентами atij, btkh, γ

t
uw и только ими. Тогда вопрос о билинейной слож-

ности задачи 〈m,n, p〉 равносилен следующей задаче.

Задача. Найти минимально возможное число l таких матриц ранга 1 из
M0, что их линейными комбинациями можно получить mp всевозмож-
ных матриц из M0, таких что все их блоки нулевые, кроме блоков главной
диагонали, которые все одинаковы и имеют следующий вид: все элементы
нулевые, кроме одного единичного.
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В случае 〈m,n, p〉 = 〈2, 2, 5〉 матрицы, которые нужно получить в резуль-
тате линейных комюбинаций матриц ранга 1, будут выглядеть так:

1 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0

, . . . ,

0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1

.

Таким образом, поиск билинейного алгоритма сложности l для задачи
〈2, 2, 5〉 равносилен поиску l матриц {X1, . . . Xl} ранга 1, линейными ком-
бинациями которых можно получить все 10 матриц, указанных выше. Как
уже отмечено, для этой задачи существует решение с l = 18 и не существует
с l 6 16. Мы исследуем вопрос о существовании решения с l = 17. Обозначим
проекции решения на правый верхний блок за ϕ12(Xi), и пусть d—размер-
ность линейного подпространства в 10-мерном пространстве матриц размера
2× 5, порожденного матрицами ϕ12(Xi). Доказано следующее утверждение.
Теорема. При d 6 4 и d > 8 решения 〈2, 2, 5〉 с l = 17 не существует.

Остается исследовать d = 5, 6, 7. Случай d = 5 исследован частично.
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Новый подход к оценке сумм граничных
функционалов для случая квазирегулярных

структур
Андреева Татьяна Владимировна

Московский государственный университет имени М.В. Ломоносова; andreevatv@cs.msu.ru

В работах А.А. Сапоженко (см., например, [1]) для получения нижней
оценки числа антицепей в ранжированных частично упорядоченных множе-
ствах применяется метод граничных функционалов, суть которого заключа-
ется в сведении исходной задачи к вычислению сумм граничных функциона-
лов по связным множествам малой мощности. А.А. Сапоженко ввел понятие
«ординарность» как совокупность условий, выполнение которых позволяет
получать оценки этих сумм. Такой подход оказался эффективным только для
случая частично упорядоченных множеств, имеющих регулярную структуру.
В случае множеств с нерегулярной структурой оценки оказываются слишком
грубыми, а необходимые вычисления— слишком громоздкими.

В настоящей работе предложено понятие «квазирегулярность», которое в
некоторых случаях позволяет получать более точные оценки сумм граничных
функционалов с помощью менее громоздких выкладок.

Рассмотрим применение метода граничных функционалов на примере за-
дачи о числе независимых множеств в двудольных графах.

Пусть Γ = (X,Z;E) —двудольный граф с долями вершин X, Z и множе-
ством ребер E. Границей множества A ⊆ X называется множество

∂(A) =
{
v ∈ Z : ∃ u ∈ A {u, v} ∈ E

}
.

Рассмотрим граф GΓ = (X;EΓ), в котором EΓ =
{
{u, v} : ∂{v}∩ ∂{u} 6= ∅

}
.

Множество A ⊆ X связно (в Γ), если связен подграф графаGΓ, порожденный
множеством A.

Обозначим через Φ(Γ) число независимых множеств в графе Γ, тогда

Φ(Γ) = 2|Z|
∑
A⊆X

2−|∂(A)|.

Функционал f(A) = 2−|∂(A)| называется граничным функционалом.
Обозначим черезA(1)(Γ) = A(Γ) семейство всех связных подмножеств мно-

жества X. Для B ⊆ A(Γ) положим B = B(1).
Пусть теперь s > 2, A1, . . . , As—различные непустые подмножества мно-

жества X. Семейство F = {A1, . . . , As} называется связным семейством ран-
га 2 над X, если Ai ∈ A(Γ), i = 1, . . . , s, и A1 ∪ . . . ∪ As ∈ A(Γ). Положим

f(F ) =
s∏
i=1

f(Ai).
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Множество всех связных семейств ранга 2 обозначается через A(2)(Γ). Для
произвольного B ⊆ A(Γ) определим семейство B(2) = 2B ∩ A(2)(Γ).

Пусть r ∈ {1, 2}, ν —натуральное число. Положим

αν(B(r)) =
∑
A∈B(r)

(
f(A)

)ν
.

Существенной частью метода граничных функционалов является выражение
Φ(Γ) через суммы типа αν(B(r)) по связным множествам малой мощности.

Граф Γ = (X,Z;E) назовем (κ, p, q, t)-квазирегулярным, если выполнены
следующие условия:

1) κ 6 |∂{v}| 6 pκ для всякого v ∈ X;

2)
∣∣{v ∈ X : {v, w} ∈ E

}∣∣ 6 pκ для всякого w ∈ Z;

3) |∂{u} ∩ ∂{v}| 6 q для любых u, v ⊆ X;

4)
∣∣|∂{u}| − |∂{v}|∣∣ 6 t для всех u, v ∈ X таких, что ∂{u} ∩ ∂{v} 6= ∅.

Везде в дальнейшем κ, q, t—натуральные числа, p > 1.
Для графа Γ = (X,Z;E) и B ⊆ A(Γ) положим

B[j] =
{
A ∈ B : |A| = j

}
, Am̂(Γ) =

m⋃
j=1

A[j](Γ),

B(2)
[j] =

{
F = {A1, . . . , As} ∈ B(2) : |A1|+ . . .+ |As| = j

}
.

Утверждение 1. Для любого (κ, p, q, t)-квазирегулярного двудольного гра-
фа Γ и любых B ⊆ A(Γ) и j, ν ∈ N справедливо

αν(B[j]) 6
(pκ)2(j−1)

4j
2j(ν(q+t)(j−1)/2+2) · αjν

(
B[1]

)
.

Утверждение 2. Для любого (κ, p, q, t)-квазирегулярного двудольного гра-
фа Γ и любых m, j ∈ N и B ⊆ Am̂(Γ) справедливо

α1(B(2)
[j] ) 6

(pκ)2(j−1)

4j
2j(q(m−1)/2+t(j−1)+5) · αj(B[1]).

Пусть S —ранжированное частично упорядоченное множество. Обозначим
через Ψ(S) число антицепей в S. Пусть Sn— n-й слой множества S, i∗—но-
мер слоя, имеющего максимальную мощность. Рассмотрим частично упоря-
доченное множество P = Si∗−1 ∪ Si∗. Определим граф Γ(S) = (Si∗−1, Si∗;E),
в котором E =

{
{β̃, γ̃} : β̃ ∈ Si∗−1, γ̃ ∈ Si∗, β̃ 6 γ̃

}
. Тогда

Ψ(S) > Ψ(P ) = Φ
(
Γ(S)

)
.
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Положим B = A2̂

(
Γ(S)

)
. Если граф Γ(S) квазирегулярный, то для оценки

сумм граничных функционалов можно применить утверждения 1 и 2. Суммы
типа αν(B[1]) могут быть вычислены как коэффициенты некоторых произво-
дящих функций.
Пример 1. При b, c ∈ N пусть Eb,c = {e−1 , . . . , e−c , n1, . . . , nb, e

+
1 , . . . , e

+
c }. Эле-

менты e−i будем называть отрицательными, элементы nj —нейтральными,
элементы e+

k —положительными. На множестве Eb,c введем отношение по-
рядка: e−i < nj < e+

k при любых i, j ∈ {1, . . . , c}, k ∈ {1, . . . , b}, элементы
одного знака будем считать несравнимыми.

На множестве En
b,c определим функцию ранга r(β̃) =

∑n
i=1 sgn(βi). Через

Fb,c(n,m) обозначим m-й слой множества En
b,c, −n 6 m 6 n. При этом i∗ = 0.

Положим X = Fb,c(n,−1), Z = Fb,c(n, 0). Граф Γ(En
b,c) является (κ, p, q, t)-

квазирегулярным при κ = bn ·min(b/2, c)c, p = max
(
b
2c ,

2c
b

)
и q = max(b, c),

t = |b− 2c|.
Рассмотрим производящую функцию

Gb,c(z) = (2−νbc+ 2−νcbz + cz2)n =
2n∑
r=0

G
(r)
b,cz

r.

Можно показать, что αν(B[1]) = G
(n−1)
b,c .

Для вычисления G(n−1)
b,c можно воспользоваться результатами работы [2].

Пример 2. Пусть k ∈ N, рассмотрим множество Ek = {0, 1, . . . , k − 1} с
отношением порядка 0 < 1 < · · · < k − 1.

На множестве En
k функцию ранга определим как r(α̃) =

∑n
j=1 αj. Через

F (n, r, k) обозначим r-й слой множества En
k , 0 6 r 6 n(k − 1). При этом

i∗ =
⌊
n(k−1)

2

⌋
.

Положим X = F
(
n,
⌊
n(k−1)

2

⌋
− 1, k

)
, Z = F

(
n,
⌊
n(k−1)

2

⌋
, k
)
. Граф Γ(En

k )

является (dn/2e, 2, 1, 1)-квазирегулярным.
Рассмотрим производящую функцию

Gk(z) = (2−ν + 2−νz + · · ·+ 2−νzk−2 + zk−1)n =

(k−1)n∑
r=0

G
(r)
k z

r.

Можно показать, что αν(B[1]) = G
(b(k−1)n/2c−1)
k .
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Об энтропийном сжатии видео
Бабин Дмитрий Николаевич

Московский государственный университет имени М.В. Ломоносова,
механико-математический факультет; d.n.babin@mail.ru

Основным алгоритмом сжатия фильмов является поиск одинаковых с
предыдущими кадрами прямоугольников на новых кадрах фильма и запоми-
нание ссылок на них. При этом объём этих ссылок может оказаться довольно
большим. Идея предлагаемого метода заключается в небольшом числе ссы-
лок, но не на прямоугольники, а на произвольные множества пикселов.

Предполагается, что кадр Ks в нашем распоряжении имеется, например,
получен раньше. Пусть кадр Kt фильма— это матрица размера m × n. В
другом кадре Ks, сдвинутом на вектор (I, J) относительно кадра Kt, найдём
совпадающие (с погрешностью ε) элементы. Среди всевозможных сдвигов
(I, J) выберем несколько тех, у которых указанных элементов достаточно
много.

При сжатии кадра Kt мы укажем номер сдвига (I, J) вместо самого пиксе-
ля, а для пикселей, которых не нашлось в кадре Ks, укажем номер кластера
таких пикселей. Число кластеров является параметром алгоритма. Проверка
показала, что эффективность метода лучше, чем у сжатия методом JPEG,
и в отдельных случаях близка в кодеку H264. Эффективность сжатия изме-
рялась как отношение сигнала к шуму (PSNR). Этот подход был обобщён
на блоки 2 × 2 или 3 × 3 пикселей кадра, при этом эффективность сжатия
увеличилась.

Интересный эффект даёт использование в качестве блоков строк матрицы
кадра для простых черно-белых изображений. Здесь возможно точное сжа-
тие, которое плохо достигается кодеками H264–H266. Метод был опробован на
базе изображений DAVIS, https://davischallenge.org/. В среднем получилось
точно сжать некоторые фильмы более чем в два раза лучше, чем кодеком
H264.
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Новый компромисс между временем работы
и количеством используемой памяти

алгоритмов k-просеивания для решения
задачи нахождения кратчайшего вектора в

решётке
Бахарев Александр Олегович

Новосибирский государственный университет; a.bakharev@g.nsu.ru

Задача поиска кратчайшего вектора в решётке (SVP) заключается в поис-
ке кратчайшего ненулевого вектора в решётке и является одной из основных
задач, к которой сводится стойкость большинства криптосистем, построен-
ных на решётках. Например, вариации задач обучения с ошибками (LWE) и
нахождения короткого целочисленного решения (SIS), на сложности решения
которых основываются современные схемы инкапсуляции ключей и подписи,
могут быть представлены как аппроксимационный вариант задачи SVP или
сводиться к ней. Одними из основных алгоритмов, решающих SVP, являют-
ся семейство алгоритмов просеивания [1–4]. Алгоритмы просеивания имеют
экспоненциальное время работы и используют экспоненциальное количество
памяти в зависимости от размерности решётки. В настоящей работе пред-
ложен новый компромисс между временем работы и используемой памятью
алгоритма 8-просеивания для решения задачи SVP.
Решётки. Термин «решётка» появляется в различных областях матема-

тики, например, алгебра, геометрия, теория графов и другие. Мы будем рас-
сматривать следующее определение. Пусть векторы ~v1, . . . , ~vn ∈ Rd линейно
независимы. Решёткой, порождённой векторами ~v1, . . . , ~vn, называется на-
бор линейных целочисленных комбинаций векторов ~v1, . . . , ~vn,

L = {a1~v1 + a2~v2 + . . .+ an~vn : a1, a2, . . . , an ∈ Z}.
Будем называть число n рангом решётки, а d— размерностью решётки.
В случае, когда n = d, решётка L называется решёткой полного ран-
га. В настоящей работе рассматриваются решётки полного ранга. Базисом
для L является любой линейно независимый набор векторов, порождающий
L. Базисные векторы могут быть представлены в виде базисной матрицы
B = [~v1|~v2| . . . |~vn]. Любые два базиса L связаны преобразованием с целочис-
ленной матрицей, определитель которой равен ±1 (унимодулярная матрица).
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Минимальным расстоянием λ1 называется норма кратчайшего ненулево-
го вектора в решетке L, то есть λ1(L) = min~x∈L\{0} ‖~x‖. Определим задачу
поиска кратчайшего вектора (Shortest Vector Problem, SVP). Пусть дан ба-
зис B, который задает решетку L, требуется найти ненулевой вектор ~v ∈ L
такой, что ‖~v‖ = λ1(L). SVP является NP-трудной задачей [5].
Алгоритмы просеивания. Основная идея k-просеивания состоит в на-

хождении в заданном списке L кортежей (~x1, . . . , ~xk) ∈ Lk, удовлетворяющих
условию ‖~x1 ± · · · ± ~xk‖ 6 1, в отличие от рассматриваемых ранее алго-
ритмов, в которых искались пары (~x1, ~x2) ∈ L2, удовлетворяющие условию
‖~x1 ± ~x2‖ 6 1 (условие ‖~x1 ± ~x2‖ 6 1 означает, что ‖~x1 + ~x2‖ 6 1 или
‖~x1 − ~x2‖ 6 1, для k > 2 аналогично). Задачу нахождения всех таких корте-
жей будем называть задачей k-просеивания. Данное расширение на k > 2 поз-
воляет уменьшить количество используемой памяти алгоритмом, т. е. вход-
ного списка L, но вместе с этим увеличивается время работы. Данный ком-
промисс между используемой памятью и временем работы алгоритма может
быть полезен при вычислении кратчайшего времени в решётке.

Будем говорить, что кортеж (~x1, . . . , ~xk) ∈ Lk удовлетворяет конфигура-
ции C ∈ Rk×k, если и только если ∀ i, j 〈~xi|~xj〉 6 Cij, где 〈~xi|~xj〉— скалярное
произведение векторов ~xi и ~xj. В [3] показано, что задача k-просеивания сво-
дится к задаче поиска кортежа (~x1, . . . , ~xk) ∈ Lk, удовлетворяющего некото-
рой конфигурации. Для конфигурации C ∈ Rk и угла α введём обозначения

C ′ij(α) =
1

sin2 α

(
Cij +

cos2 α

k − 1

)
и V(α) = poly(d) · sinn α.

Также для улучшения временных характеристик алгоритма используются
локально-чувствительные фильтры [1, 2]. В [2] авторами была представлена
новая концепция алгоритма k-просеивания, на основе которой были построе-
ны алгоритмы 3- и 4-просеивания, предлагающие новый компромисс между
временем работы и используемой памятью алгоритмов.

8-просеивание. Используя концепцию из [2], в настоящей работе предло-
жен новый алгоритм 8-просеивания. Для данного алгоритма получены выра-
жения для времени работы и количества используемой памяти.

Теорема. Пусть V(α) = 1
|L1|, Y = 1

sin2(α)·(8+12C12+8C23+4C34)
− 1, Y23 = C23−C2

12

(1−C2
12)

,

Y234 = C34−C2
12−(1−C2

12)Y23
1−C2

12−(1−C2
12)Y 2

23
. Тогда время выполнения предложенного алгоритма

равно T = 6T12 + 4T123 + 2T1234 + T1...8, где

T12 = O
(
|L1|2

(1− C2
12)

n/2

(1− C ′12(α)2)n/2

)
, L12 = |L1|2(1− C2

12)
n/2,

T123 = O
(
|L1||L2(~x1)|2

(1− Y 2
23)

n/2

(1− Y ′223)n/2

)
, L123 = |L1||L2(~x1)|2(1− Y 2

23)
n/2,
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T1234 = O
(
|L1||L2(~x1)||L3(~x1, ~x2)|2

(1− Y 2
234)

n/2

(1− Y ′234(α)2)n/2

)
,

L1234 = |L1||L2(~x1)||L3(~x1, ~x2)|2(1− Y 2
234)

n/2,

T1...8 = O
(
|L1234|2

(1− Y 2)n/2

(1− Y ′(α)2)n/2

)
, L1...8 = |L1234|2(1− Y 2)n/2.

Количество используемой памяти равно
M = max {|L1|, |L12|, |L123|, |L1234|, |L1...8|}.

Для получения численных значений времени работы и количества исполь-
зуемой памяти предложенного алгоритма 8-просеивания написана програм-
ма на языке Sage. Отметим, что при количестве используемой памяти равном
20.2075n предлагаемый алгоритм совпадает по времени работы и используемой
памяти с алгоритмом из [1], который является оптимальным по времени рабо-
ты алгоритмом на сегодняшний день. Для количества используемой памяти,
близкого к минимальным значениям, предлагаемый алгоритм работает доль-
ше, что совпадает с поведением алгоритма 4-просеивания из [2]. На отрез-
ке (20.157n, 20.189n) используемой памяти предложенный алгоритм показывает
минимальное время работы для известных алгоритмов k-просеивания.

Работа выполнена при поддержке Математического Центра в Академго-
родке, соглашение с Министерством науки и высшего образования Россий-
ской Федерации №075-15-2022-282.
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Оценка длин тестов в базисе Жегалкина
при константных неисправностях типа «1»

на выходах элементов
Бородина Юлия Владиславовна

Институт прикладной математики имени М.В. Келдыша РАН; jborodina@inbox.ru

Будем рассматривать схемы из функциональных элементов в базисе Же-
галкина B = {⊕,&, 0, 1}. В качестве неисправностей предполагаем констант-
ные неисправности типа «1» на выходах конъюнкторов и сумматоров.

Пусть S —некоторая схема из функциональных элементов, реализующая
булеву функцию f(x̃), x̃ = (x1, x2, . . . , xn), в базисе B.

Функция, реализуемая на выходе схемы при наличии в последней неис-
правных элементов, называется функцией неисправности. Всякое множество
T входных наборов схемы S называется полным проверяющим тестом для
этой схемы, если для любой функции неисправности g(x̃), не равной тожде-
ственно f(x̃), в T найдется хотя бы один такой набор σ̃, что f(σ̃) 6= g(σ̃).
Число наборов, составляющих этот тест, называется длиной теста. Введем
обозначения: D(f) —минимум длин проверяющих тестов по всем схемам S,
реализующим функцию f ; D(n) = maxD(f), где максимум берется по всем
булевым функциям f от n переменных.

В работе [1] было доказано, что в случае константных неисправностей ти-
па «0» на выходах элементов всякую булеву функцию можно реализовать
схемой из функциональных элементов в базисе B, допускающей полный про-
веряющий тест длины 1.

В случае константных неисправностей типа «1» такого рода результат
невозможен. Именно, в [2] был описан достаточно узкий класс булевых функ-
ций f , для которых D(f) = 1. В [3] выделены некоторые классы функций,
допускающих легкотестируемые схемы.

В докладе представлена оценка D(f) для функций f , у которых много-
член Жегалкина имеет ограниченную степень. При этом удается улучшить
известные оценки D(n) при малых n.

Теорема 1. Справедливы следующие оценки функций Шеннона длин полных
проверяющих тестов для схем из функциональных элементов в базисе Же-
галкина при константных неисправностях типа «1» на выходах элементов
для классов булевых функций:
1) D(2) = 2, D(3) 6 4, D(4) 6 8, D(5) 6 16, D(6) 6 32;



20 Бородина Ю.В.

2) для функций f от n переменных, представимых линейным многочленом
Жегалкина, D(f) 6 1;

3) для функций f от n переменных, у которых многочлен Жегалкина имеет
степень не выше 2, D(f) 6 2n− 2;

4) для функций f от n переменных, у которых многочлен Жегалкина имеет
степень не выше 3, D(f) 6 n2 − 3n+ 4;

5) для функций f от n > k переменных, у которых многочлен Жегалкина
имеет степень не выше k, D(f) 6 nk−1

(k−2)! + 1.

В последнее время получен ряд оценок функции Шеннона длин тестов для
схем в базисе Жегалкина в предположении наличия только одного неисправ-
ного элемента. В [4] найдено точное значение 1 функцииШеннона длины еди-
ничного проверяющего теста при константных неисправностях типа «1» на
выходах элементов. Д.С. Романов [5] нашёл точное значение 1 функцииШен-
нона длины единичного диагностического теста при инверсных неисправно-
стях на выходах элементов, Д.С. Романов и Е.Ю. Романова [6] получили
верхнюю оценку 16 функции Шеннона длины единичного проверяющего те-
ста при произвольных константных неисправностях на входах и выходах эле-
ментов, К.А. Попков — для функции Шеннона длины единичного диагности-
ческого теста точное значение 2 (при n > 2) при однотипных константных
неисправностях типа «0» на выходах элементов [7] и верхнюю оценку 3 при
однотипных константных неисправностях типа «1» на выходах элементов и
при инверсных неисправностях на входах и выходах элементов [8] .
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В работе [1] предложен алгоритм перехода между операторными полино-
миальными формами булевых функций в классе двупорожденных форм, а
также найдена верхняя граница его сложности. Дальнейшие исследования
позволили модифицировать этот алгоритм до применения в более широких
классах форм, не являющихся двупорожденными.

Как и в указанной работе, далее в изложении предполагается, что булевы
функции n аргументов являются векторами линейного векторного простран-
ства Fn размерности 2n.

Пусть заданы базисы

G = {g1(x1, . . . , xn), . . . , g2n(x1, . . . , xn)} и

H = {h1(x1, . . . , xn), . . . , h2n(x1, . . . , xn)}.
Для функции f(x1, . . . , xn) известны коэффициенты разложения или вектор
функции (α1, . . . , αk, . . . , α2n) в базисе G. Задача заключается в построении
алгоритма (имеющего в некотором смысле минимальную сложность), вычис-
ляющего компоненты вектора (β1, . . . , βk, . . . , β2n) этой функции в базисе H.

Под сложностью Lj(n) алгоритма будем понимать количество операций
умножения · и сложения ⊕, которые нужно применить к коэффициентам
разложения αi для нахождения коэффициента βj, и L(n) —количество пере-
становок и операций умножения · и сложения ⊕, которые нужно применить
к коэффициентам разложения αi для нахождения всех βj.
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Для произвольных базисов существует универсальный алгоритм, использу-
ющий матрицу перехода. Однако он имеет большую асимптотическую слож-
ность даже для нахождения одной компоненты: Lj(n) � 2·2n, соответственно
для всех компонент: L(n) � 2 · 4n.

Алгоритм из работы [1] имеет верхнюю оценку сложности L(n) 6
n

2
· 2n

для класса базисов, каждый из которых состоит из функций, являющихся
операторными образами определенного класса функций. Для конкретного
базиса выбираются образы одной функции.

Для дальнейшего изложения потребуются несколько определений. Более
детальное описание используемых операторов и их свойств приведено в [2].

Оператор t : Fn → Fn представляется в виде последовательности t1 . . . tn,
ti ∈ {d, e, p}. Компонента ti оператора t действует на функцию f(x1, . . . , xn)
по переменной xi следующим образом:

tif(x1, . . . , xn) =


f(x1, . . . , xn), если ti = e,

f(x1, . . . , x̄i, . . . , xn), если ti = p,

f ′xi(x1, . . . , xn), если ti = d,

где f ′xi(x1, . . . , xn) —производная функции f по переменой xi.
Оператор t действует на функцию так:

t(f(x1, . . . , xn)) = t1(t2 . . . tn(f(x1, . . . , xn))).

Пучком операторов называется упорядоченная последовательность 2n опе-
раторов. Пучок T = (t0, . . . , t2n−1) называется базисным, если существует та-
кая функция g(x1, . . . , xn), что {t0(g(x1, . . . , xn)), . . . , t2n−1(g(x1, . . . , xn))}—
базис Fn. Функция g в этом случае называется базисной.

Пучок T будет называться двупорожденным, если существуют операторы
a = a1 . . . an и b = b1 . . . bn, в которых для любого i выполняется ai 6= bi,
1) t0 = a,
2) t2n−1 = b и
3) ti = t1 . . . tn, где tk = ak, если в двоичном разложении числа

i = j1 . . . jk . . . jn цифра jk = 0, и tk = bk, если jk = 1.
Пусть a = a1 . . . an и b = b1 . . . bn—порождающие операторы двупорожден-

ного пучка T, а компоненты оператора c = c1 . . . cn удовлетворяют условию:
ci 6= ai и ci 6= bi для всех 1 6 i 6 n.

Класс пучков ET построен по пучку T следующим образом: Ej ∈ ET, если
оператор oi пучка Ej совпадает с оператором ti при i 6= j и oi = c при i = j.
Полагаем, что T ∈ ET. Класс ET называется расширением для T, пучки из
этого класса для краткости будем назвать расширенными.

Двупорожденные и расширенные пучки являются базисными [2]. Опера-
торной формой функции будет называться разложение по базису, построен-
ному по базисному операторному пучку и базисной функции.
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Через Ht будет обозначаться класс пучков, в которых оператор с индек-
сом 0 совпадает с t; H—класс всех двупорожденных пучков; EHt —класс
расширений всех пучков из Ht; EH—класс расширений всех пучков из H.

Теорема 1. Для любой функции f(x1, . . . , xn) для любой пары базисов, по-
рожденных пучками из класса EH, существует алгоритм перехода со сле-
дующей верхней границей сложности L(n):

1. Если пучки из одного класса Ht, то

L(n) 6
n

2
· 2n.

2. Если пучки из класса H или из одного класса EHt, но не принадлежат
одному классу Ht для любого t и не принадлежат одному классу ET для
любого T, то

L(n) 6
(n

2
+ 2
)
· 2n.

3. Если пучки из класса EH, но не принадлежат одному классу EHt для
любого t и не принадлежат классу H, то

L(n) <
(n

2
+ 4
)
· 2n.

Замечание. Верхняя оценка для класса H всех двупорожденных пучков,
приведенная в [1], не совпадает с оценкой пункта 2 теоремы ввиду разного
определения сложности алгоритма. В теореме используется определенный
порядок операторных образов функции, порождающей базис.

Известный алгоритм перехода от совершенной полиномиальной нор-
мальной формы (СПНФ) к полиному Жегалкина [3] имеет сложность (без
учета перестановок) L(n) =

n

2
· 2n и неявно полагает присутствия опре-

деленного порядка функций в базисах. При таком порядке эти полиноми-
альные формы порождаются пучками, входящими в класс He...e и, следова-
тельно, для них верхняя граница определяется пунктом 1 теоремы. Мож-
но заметить, что эти два пучка, порождающие базисы СПНФ и полинома
Жегалкина, дают верхнюю границу сложности алгоритма перехода.
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Кривая Пеано — Гильберта, ее реализация
конечным автоматом и ее свойства

Власов Андрей Владимирович, Гашков Сергей Борисович
Московский государственный университет имени М.В. Ломоносова;
andrei.vlasov@math.msu.ru, sbgashkov@gmail.com

Непрерывные отображения, которые переводят отрезок в квадрат, извест-
ны давно. В 1891 году немецкий математик Давид Гильберт опубликовал [1]
свой вариант кривой, заполняющей пространство. Это отображение называ-
ется кривая Гильберта. В работе был построен конечный автомат с 4 состо-
яниями, реализующий данное отображение.

Известно, что обе функции Pi : [0; 1] → [0; 1], являющиеся компонентами
отображения Гильберта, непрерывны и удовлетворяют условию Гёльдера с
показателем 1

2 и не удовлетворяют этому условию с большим показателем [2–
4]. Также былла известна [5] оценка сверху на константу в условии Гёльдера
с показателем 1

2 :

|Pi(x)− Pi(y)| 6
√

6 ∗
√
|x− y|. (1)

В данной работе было доказано, что улучшить оценку нельзя, то есть даже
если выбирать x и y сколь угодно близкими друг к другу, модуль непрерыв-
ности

ω(Pi, h) = max
x,y|x−y|6h

|Pi(x)− Pi(y)| (2)

не может быть меньше
√

6h при h = (2/3)/42n+i−1.
В работе также исследовались арифметические свойства отображения

Гильберта. В частности, изучалось, как функции Pi преобразуют правильные
рациональные дроби p/q. Было доказано, что период раациональной дроби
не может увеличиться больше, чем в 2 раза. Также при помощи обратного
автомата был построен пример уменьшения периода в 3 раза.

Также была доказана следующая теорема о свойствах автомата, реализу-
ющего кривую Гильберта.

Теорема 1. У автомата, реализующего кривую Гильберта, не может
быть меньше 4 состояний.
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Верхняя оценка переключательной
мощности плоской автоматной схемы для
автоматов с ограничениями на диаграммы
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В данной работе рассматривается понятие плоской автоматной схемы, яв-
ляющееся расширением понятия схемы из клеточных элементов, введённого в
работе Кравцова С.С. [1]. В работах [2, 3] Калачев Г.В. показал, что порядок
потенциала и переключательной мощности схемы из клеточных элементов,
реализующей булеву функцию от n переменных, составляет 2n/2.

Определения

В данной работе мы будем опираться на определение, введённое автором в
работе [4]. Ниже вводятся меры сложности, отличные от мер сложности из [4],
так как теперь мы рассматриваем схемы со входами.
Определение переключательной мощности. Состоянием схемы K на

такте t при подаче на вход строки α = (α1, α2, . . . , αl) длины l назовём вектор
sK(α, t) := (g1(t), . . . , gh(t)), где gi— автоматная функция, реализуемая в i-м
узле схемы K. Величину cK(t) := |sK(α, t) ⊕ sK(α, t + 1)| назовём затратой
энергии на переключение схемы с такта t на t+ 1.

Переключательной мощностью схемы K на последовательности α назо-

вём W (K,α) =
1

l

l−1∑
t=0

cK(t, α). Переключательной мощностью схемы K на
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последовательностях длины s назовём W (K, s) =
1

2s

∑
α∈Es

W (K,α). Переклю-

чательной мощностью автомата A на последовательностях длины s назовём
W (A, s) = min

AK=A
W (K, s), где AK — автомат, реализуемый схемой K.

Функцией Шеннона для переключательной мощности автоматов из класса
A на последовательностях длины s назовём W (A, s) = max

A∈A
W (A, s).

Определение рассматриваемого класса автоматов. Определим мно-
жество троек Γ = (g,R, p), где первый элемент — граф, второй— множество
выделенных вершин «корней», последний— число выделенных рёбер, назы-
ваемое число переключений, следующим образом. Определим некоторый эле-
мент из Γ и две операции, сохраняющие Γ:
1. Граф g содержит единственную вершину v и не имеет рёбер. Тогда

(g, {v}, 0) ∈ Γ.
2. Операция «Образование петли». Пусть тройка (g,R, p) принадлежит Γ,
g = (V,E). Тогда для произвольной висячей вершины v графа g и про-
извольных r, r′ ∈ R; r 6= r′ тройки (g′, R, p + 1) и (g′′, R, p + 2) также
принадлежат Γ. Здесь g′ = (V,E ∪ {(v, r)}), g′′ = (V,E ∪ {(v, r), (v, r′)}).

3. Операция «Добавление дерева». Пусть тройка (g,R, p) принадлежит Γ.
Тогда для любых U ,U ′ ∈ D(n, d) и произвольной висячей вершины v графа
g тройки (g′ ∪U , R′, p+ 1) и (g′′ ∪U ∪U ′, R′′, p+ 2) также принадлежат Γ.
Пусть ν и ν ′—корни U и U ′ соответственно. Здесь g′ := (V,E ∪ {(v, ν)}),
g′′ := (V,E∪{(v, ν), (v, ν ′)}), R′ := R∪{ν}, R′′ := R∪{ν, ν ′}. Объединение
графов понимается как объединение множеств вершин и множеств рёбер
в предположении, что эти множества изначально не пересекаются.

Каждый граф из троек из множества Γ содержит в качестве подграфов дере-
вья, из листьев которых произвольно проведены рёбра в корни других дере-
вьев или же в корень самого подграфа. Деревья для построения выбираются
из множестваD(n, d). Из каждой вершины выходит не более двух рёбер. Опе-
рация «Добавление дерева» позволяет построить тройку с большим числом
вершин в графе, а операция «Образование петли» позволяет провести рёбра
из листа некоторого поддерева в корень некоторого, возможно совпадающего,
поддерева.

Определим Γ(2n) ⊆ Γ как множество всех троек, в которых граф
g построен на 2n вершинах и не имеет висячих вершин. Положим
Γ(2n, s) := {(g,R, p) | (g,R, p) ∈ Γ(2n), p 6 s}. Графы этого множества не
имеют висячих вершин, при этом рёбер, соединяющих корни и листья подде-
ревьев, не более s.

Определим A(2n, s, d(n)) —множество диаграмм Мура, полученных путём
определения нагрузки на графах g из тройки (g,R, p) ∈ Γ(2n, s) следующим
образом:
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1. Если из вершины выходит только одно ребро, то нагрузим его символом
(0, 1), если два ребра, то одно — символом 0, другое — 1.

2. Выберем произвольную вершину и отметим её как начальную.
3. Нагрузим каждую вершину одним из символов {0, 1, x, x̄}.
В данной работе представлена верхняя оценка для реализации плоскими ав-
томатными схемами произвольного автомата из данного класса. В дальней-
шем полагаем s по порядку не более 2n

n .

Теорема о верхней оценке переключательной мощности

Теорема 1.

W (A(2n, s, d(n)), l) � 2n/2

d(n)
при n→∞, l > d(n), s � 2n

n
,

причём для каждой пары соседних тактов затраты энергии на переклю-
чение схемы, реализующей автомат из класса A(2n, s, d(n)), не больше по
порядку 2n/2.

Для доказательства теоремы строится схема, содержащая большее количе-
ство задержек относительно тривиальной реализации, однако именно избы-
точность по числу задержек позволяет уменьшить переключательную мощ-
ность. Результат достигается за счёт того, что отдельное дерево в рассмат-
риваемом автомате при переходе автомата в состояние из него передаётся в
относительно маленькую по площади область схемы, расположенную близко
к выходу. Тем самым, пока автомат находится в состояниях внутри конкрет-
ного поддерева, схема выделяет очень мало мощности, и это продолжается не
менее d(n) тактов — хотя бы столько тактов нужно после попадания автомата
в корень поддерева, чтобы дойти до листа. Переключение между автомата-
ми, наоборот, требует активации значительной площади схемы, что приводит
к скачку затрат энергии на переключение. Существенный результат достига-
ется при растущем с ростом n параметре d(n).
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Введение

Правильные семейства функций были введены В.А. Носовым в работе [1].

Определение 1. Пусть k, n ∈ N, k > 2. Семейство функций
(f1, . . . , fn), fi ∈ P n

k , называется правильным, если для любых α, β ∈ En
k ,

α = (a1, . . . , an), β = (b1, . . . , bn), α 6= β, найдется индекс i, 1 6 i 6 n, такой
что ai 6= bi, но fi(α) = fi(β).

К настоящему моменту известен ряд примеров правильных семейств. В
частности, несложно показать, что правильными являются треугольные се-
мейства, для которых fi может существенно зависеть только от переменных
с меньшими номерами (с точностью до согласованной перенумерации пере-
менных и функций; см., например, [2]). Одной из важных характеристик пра-
вильного семейства является мощность образа; в работе [3] показано, что в
множестве треугольных семейств содержатся представители, мощность обра-
за которых максимально возможная в классе правильных семейств.

Еще один интересный пример правильных семейств приведен в работе [2].
Пусть значность логики k является простым числом, n нечетно, ϕ есть неко-
торый перестановочный многочлен, fi = ϕ(xi+1+1)·. . .·ϕ(xi+1+k−1)·ϕ(xi+2),
где индексы переменных зацикливаются естественным образом. Достоинства-
ми таких семейств являются компактность спецификации и возможность за-
дания функций с требуемыми ограничениями на степень многочлена.

Отметим, что доля известных примеров правильных семейств среди всех
семейств порядка n стремится к 0 при n→∞. Таким образом, задача поиска
новых примеров представляет несомненный интерес.

Рассмотрим обобщения приведенных классов правильных семейств.
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Рекурсивно и локально треугольные семейства

Определение 2. Семейство (f1, . . . , fn) является рекурсивно треуголь-
ным, если найдется индекс i, 1 6 i 6 n, такой что fi является констан-
той и каждое непустое семейство, полученное из (f1, . . . , fn) подстановкой
некоторой константы вместо переменной xi и исключением функции fi,
также является рекурсивно треугольным.

Правильность рекурсивно треугольных семейств будет установлена как
следствие теоремы 2.

Теорема 1. Для числа рекурсивно треугольных семейств размера n спра-
ведлива формула: ∆rec

k (n) =
∑n

j=1(−1)j+1 · kj ·
(
n
j

)
(∆rec

k (n− j))k
j

, где
∆rec
k (0) = 1. При k = 2 доля рекурсивно треугольных семейств в классе

всех правильных семейств стремится к 0 при n→∞.

Интересно, что при k = 2 число рекурсивно треугольных семейств разме-
ра n совпадает с числом рекурсивных ориентаций куба G(En

2 ) (см. последова-
тельность A141770). Для обобщения второго утверждения теоремы на случай
произвольного k требуется получение верхней оценки на число правильных
семейств в общем случае, что является задачей дальнейших исследований.

В работе [4] для случая k = 2 был введен локальный граф суще-
ственной зависимости семейства функций. Он строится для некоторого
входного набора α = (a1, . . . , an). Множество вершин есть {1, . . . , n}, ду-
га (i, j) проводится если и только если найдется a′ ∈ Ek, такое что
fj(α) 6= fj(a1, . . . , ai−1, a

′, ai+1, . . . , an) (обозначим это через ∂ifj(α) 6= 0; фак-
тически, это отсутствие существенной зависимости fj от xi в точке α). В
работе [4] по сути было показано, что если для каждого α ∈ En

2 локальный
граф существенной зависимости булева семейства (f1, . . . , fn) ациклический,
то семейство является правильным. Обобщим этот результат на случай k > 3.

Определение 3. Семейство (f1, . . . , fn) называется локально треугольным
в точке α ∈ En

k , если с точностью до согласованной перенумерации пере-
менных и функций ∂ifj(α) = 0 для всех 1 6 j < i 6 n. Если это свойство
выполнено для всех α, семейство называется локально треугольным.

Несложно заметить, что локальная треугольность эквивалентна ациклич-
ности графа существенной зависимости.

Теорема 2. Если семейство является рекурсивно треугольным, то оно ло-
кально треугольное. Если семейство является локально треугольным, то
оно правильное.



30 Галатенко А.В., Носов В.А., Панкратьев А.Е., Царегородцев К.Д.

Несложно увидеть, что треугольные семейства являются рекурсивно тре-
угольными, но существуют рекурсивно треугольные семейства, не являющи-
еся треугольными. Кроме того, существуют локально треугольные семейства,
не являющиеся рекурсивно треугольными. Из этих наблюдений следует, что
мощность образа локально треугольного семейства может быть равна любо-
му целому числу из интервала от 1 до kn−1, то есть полностью покрывает
весь диапазон мощностей образа правильных семейств.

В заключение раздела в таблице 1 приведем численные значения мощно-
сти для k = 2 и небольших n. Заполнение пустой ячейки является задачей
дальнейших исследований.

Размер n ∆(n) ∆rec(n) ∆loc(n) T (n)
n = 1 2 2 2 2
n = 2 12 12 12 12
n = 3 488 680 680 744
n = 4 481776 3209712 3349488 5541744
n = 5 157549032992 94504354122272 . . . 638560878292512

Табл. 1: мощности классов при небольших n. Символом ∆(n) обозначено чис-
ло треугольных, ∆loc(n) —локально треугольных, T (n) —число правильных
семейств размера n при k = 2.

Обобщение конструкции с перестановочным многочленом

Определение 4. Пусть c, d ∈ Ek, h ∈ P k
k . Функция h обладает (c, d)-свой-

ством, если на любом входном наборе, содержащем значение c, она прини-
мает значение d.

Например, функции min и умножение по модулю k обладают (0, 0)-свой-
ством, а функция max обладает (k − 1, k − 1)-свойством.

Будем считать, что индексы 1, 2, . . . , n «скручены в кольцо»: за n следу-
ет 1, перед единицей идет n. Пусть функции hi ∈ P k

k , i = 1, . . . , n, обладают
(c, d)-свойством, g ∈ P 1

k принимает значение c хотя бы на одном входном
наборе, I1 = (c1, . . . , ct), I2 = (ct+1, . . . , ck) —две непересекающиеся подпо-
следовательности элементов Ek, в объединении дающие все Ek. Рассмотрим
семейство (f1, . . . , fn), определенное следующим соотношением:

fi = hi (g(xi+1 + c1), . . . , g(xi+1 + ct), g(xi+2 + ct+1), . . . , g(xi+2 + ck)) . (1)

Теорема 3. Семейство (1) является правильным при нечетном n.
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Пусть a и b—два натуральных числа, двоичная запись которых содержит
по порядку n разрядов. Наиболее известный и быстрый алгоритм умноже-
ния таких чисел был предложен А.А. Карацубой [1], и он имеет сложность
O(nlog2 3). Более быстрым по порядку алгоритмом умножения является ал-
горитм Шёнхаге —Штрассена [2]. Его сложность O(n · log n · log log n). Но
на практике алгоритм Шёнхаге —Штрассена быстрее алгоритма Карацубы,
только если значность числа более 10 тысяч. Еще более быстрым по поряд-
ку является алгоритм Фюрера [3], но его преимущество может проявиться
при значности чисел более 1013. Относительно недавно появился алгоритм
Харви— ван дер Хувена [4] со сложностью O(n log n).

Для деления натуральных чисел с остатком известен алгоритм Бурнике-
ля —Циглера [5]. Он использует внутри себя алгоритм умножения. Если в ка-
честве алгоритма умножения взять алгоритм Карацубы, то вычислительная
сложность алгоритма Бурникеля—Циглера будет O(nlog2 3), а если исполь-
зовать алгоритм умножения Шёнхаге —Штрассена, то сложность алгоритма
Бурникеля—Циглера будет O(n · log2 n · log log n).

В данной работе предлагаются алгоритмы решения задач умножения и
деления с остатком n-значных натуральных чисел с помощью клеточных ав-
томатов с локаторами.

Приведем неформальное описание двумерного клеточного автомата с ло-
каторами.



32 Гасанов Э.Э., Хайбуллин Б.Ф.

Расположим в каждой клетке плоской решетки Z2 один и тот же авто-
мат с локаторами. Понятие локатора определим чуть позже, сейчас важно,
что каждый локатор в каждый момент принимает некоторое значение. Ав-
томат имеет функцию перехода, которая по состоянию соседей автомата и
по значениям локаторов в текущей момент определяет состояние автомата
в следующий момент. Кроме того, у автомата есть функция вещания, кото-
рая по состояниям соседей автомата и по значениям локаторов вычисляет
сигнал вещания, который передается в эфир. Сигналы вещания образуют ко-
нечную аддитивную коммутативную полугруппу, а эфир представляет собой
потенциально бесконечный сумматор сигналов элементарных автоматов, где
в качестве оператора суммы выступает определяющая операция данной по-
лугруппы. Каждый локатор представляет собой некоторый телесный угол с
вершиной в позиции автомата, а значением локатора в текущий момент явля-
ется сумма сигналов вещания всех автоматов, попадающих в этот телесный
угол. Отметим, что в область суммирования локатора не входит вершина те-
лесного угла. т. е. мы сигнал вещания, посылаемый данным автоматом, не
включаем в сумму.

Строгое определение клеточного автомата с локаторами можно найти в [6].
В наших алгоритмах будут использоваться один полный локатор, который

представляет собой двумерную плоскость с выколотым началом координат,
и 8 локаторов, представляющих собой лучи, направленные на север, северо-
восток, восток, юго-восток, юг, юго-запад, запад и северо-запад.

Определим задачу умножения чисел a и b для клеточного автомата с ло-
каторами. В начальной конфигурации только 3 ячейки находятся не в со-
стоянии покоя, а именно ячейка с координатами (0, 0) находится в состоянии,
которое можно назвать «начало координат», ячейка с координатами (a, 0) на-
ходится в состоянии, которое можно назвать «первый сомножитель», а ячейка
с координатами (0, b) находится в состоянии, которое можно назвать «второй
сомножитель». Клеточный автомат решает задачу умножения чисел, если в
финальной конфигурации ячейка с координатами (a · b, 0) перейдет в состо-
яние «результат умножения», а все остальные ячейки, кроме (0, 0), перейдут
в состояние покоя.

Справедлива следующая теорема, доказанная Э.Э. Гасановым.

Теорема 1. Существует двумерный клеточный автомат с 9 локаторами,
который решает задачу умножения чисел a и b за время 2dlog2 ae+ 2.

Здесь если x— вещественное число, то ]x[ — это наименьшее целое, не мень-
шее x.

Определим задачу деления чисел a и b с остатком для клеточного автомата
с локаторами. В начальной конфигурации только 3 ячейки находятся не в со-
стоянии покоя, а именно ячейка с координатами (0, 0) находится в состоянии,
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которое можно назвать «начало координат», ячейка с координатами (a, 0)
находится в состоянии, которое можно назвать «делимое», а ячейка с коор-
динатами (0, b) находится в состоянии, которое можно назвать «делитель».
Пусть c = ba/bc—целая часть от деления a на b, d = a mod b— отстаток
от деления a на b. Клеточный автомат решает задачу деления чисел, если в
финальной конфигурации ячейка с координатами (c, 0) перейдет в состояние
«частное», ячейка с координатами (0, d) перейдет в состояние «остаток», а
все остальные ячейки, кроме (0, 0), перейдут в состояние покоя.

Справедлива следующая теорема, доказанная Б.Ф. Хайбуллиным.

Теорема 2. Существует двумерный клеточный автомат с 9 локатора-
ми, который решает задачу деления чисел a и b с остатком за время
3dlog2(a/b)e+ 8.

Список литературы
[1] Карацуба A., Офман Ю. Умножение многозначных чисел на автоматах //

Доклады Академии наук СССР. 1962. Т. 145, №2. С. 293–294.
[2] Schönhage A., Strassen V. Schnelle Multiplikation großer Zahlen // Comput-

ing. 1971. No. 7. P. 33–47.
[3] Fürer M. Faster integer multiplication // Proceedings of the thirty-ninth an-

nual ACM symposium on Theory of computing. New York, NY, USA : Asso-
ciation for Computing Machinery, 2007. P. 57–66.

[4] Harvey D., van der Hoeven J. Integer multiplication in time O(n log n) //
Annals of Mathematics. 2021. Vol. 193, no. 2. P. 563–617.

[5] Burnikel C., Ziegler J. Fast recursive division. Research Report MPI-I-98-
1-022. Saarbrücken, Germany : Max-Planck-Institut für Informatik, 1998.

[6] Гасанов Э.Э. Клеточные автоматы с локаторами как модель устройств
с беспроводной связью // Математические вопросы кибернетики. 2023.
Т. 21. С. 5–51.

О диаметре начала натурального ряда в
одной арифметической модели

Дергач Пётр Сергеевич1, Дускаев Рифат Ринатович2

1 Московский государственный университет имени М.В. Ломоносова; dergachpes@mail.ru
2 Московский государственный университет имени М.В. Ломоносова, филиал в городе Ташкенте;

duskaevrifat2904@mail.ru

Аннотация

Данная статья является тезисами к докладу автора на XX Международной
конференции «Проблемы теоретической кибернетики». В докладе излагают-
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ся результаты об асимптотике диаметра начала натурального ряда в одной
арифметической модели. Более подробная постановка задачи приводится во
введении. Ознакомиться с аналогичными задачами по той же тематике мож-
но в работах [1, 2].

Введение

Приведем аккуратную постановку исследуемой задачи. Пусть n ∈ N—нату-
ральное число. Множество натуральных чисел от 1 до n обозначаем через [n].
Расстоянием между произвольными двумя числами a, b из [n] называем ми-
нимальное количество d(a, b) арифметических операций +1,−1, ∗2, /2 доста-
точное для того, чтобы из числа a получить число b. При этом можно в ходе
операций выходить за границы множества [n], но все промежуточные вычис-
ления должны быть целочисленны, то есть операция /2 применима лишь к
четным числам. Диаметром d(n) называем самое большое из попарных рас-
стояний между элементами из [n]. Необходимо получить как можно более
полную информацию о поведении данной функции. В рамках данной ста-
тьи приводится результат об ее асимптотике. В дальнейшем представляется
возможным получить ее точное значение, но это потребует дополнительной
проработки и аккуратного исследования.

Вспомогательные результаты

Определение. Называем каноническим путем между числами a, b ∈ [n]
последовательность операций вида

a : a : . . . a : b ∗ a ∗ a . . . ∗ a,
где вместо каждого вхождения a подставляются (независимо друг от дру-
га) или одна из операций +1, −1, или отсутствие операции, через b обо-
значено или некоторое (возможно нулевое) количество операций +1, или
некоторое (возможно нулевое) количество операций −1, через ∗ обозначе-
на операция ∗2, через : обозначена операция /2. При этом как количество
умножений, так и количество делений в этой последовательности может
быть равно 0. Если в каноническом пути k умножений и l делений, то для
краткости называем такой путь k, l-каноническим путем.

Лемма 1. Для произвольных a, b ∈ [n] расстояние d(a, b) реализуется на
одном из канонических путей между a, b.

Доказательство. Утверждение тривиально следует из четырех наблюдений.
Первое — если где-то в последовательности операций после умножения идет
деление, то можно взять две такие соседние операции, между которыми будут
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только операции сложения и вычитания. Но в этом случае цепочку t ∗ ±2k :
(степень обязана быть четной из-за операции деления) можно заменить на
t±k, тем самым уменьшив ее длину. Второе — если где-то в блоке из идущих
подряд операций сложения и вычитания есть обе операции, то соседнюю пару
противоположных операций можно было бы убрать. Третье — непосредствен-
но перед операцией деления не может идти больше одной операции ±, так
как в этом случае цепочка t±± : заменяется на более короткую t : ±. И чет-
вертое — непосредственно после операции умножения не может идти больше
одной операции ±, так как в этом случае цепочка t∗±± заменяется на более
короткую t± ∗.

Лемма 2. Примененная к числу t ∈ N последовательность операций

a1 : a2 : . . . : ak :,

где через ai, i ∈ [k], обозначены или одна из операций +1, −1, или отсут-
ствие операции, переводит это число или в целую часть снизу или в целую
часть сверху от t

2k
.

Доказательство. Доказательство тривиально следует из того факта, что по-
лучаемое число равно t

2k
+ a1

2k
+ a2

2k−1
+ . . .+ ak

2 , где ai ∈ {−1, 0, 1}.

Основные результаты

Теорема.
d(n) = 3 log2 n · (1 + o(1)).

Доказательство. Ввиду ограниченности объема тезисов приведем здесь
лишь общую схему доказательства.

Для обоснования верхней оценки достаточно заметить, что если число за-
писать в бинарном виде (в системе исчисления по модулю 2), то для того,
чтобы стереть 2 бита на конце числа, всегда хватает 3 операции. В самом
деле, для стирания 00 достаточно провести ::, для 01 —− ::, для 10 — : − :,
для 11 — + ::. Таким образом, для преобразования числа n к 1 асимптоти-
чески достаточно 3

2 log2 n операций, откуда тривиально получаем требуемую
верхнюю оценку на произвольную пару чисел из [n].

Для обоснования нижней оценки предъявим конкретную пару чисел с дво-
ичными представлениями a = 10(01)s и b = 11(01)s, где параметр s выбира-
ется так, чтобы эти числа были как можно ближе к n, но не превосходили
его. Покажем, что расстояние между этой парой чисел асимптотически не
меньше чем 3 log2 n. Из леммы 1 следует, что расстояние между ними дости-
гается на каком-то k, l-каноническом пути. Из леммы 2 также следует, что
выбор такого пути полностью определяется его параметрами k, l и выбором
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того, в какую сторону идет округление — вниз или вверх. Другими словами,
мы можем поделить одно число на 2k с округлением вниз или вверх, а второе
число — на 2l с округлением вниз или вверх (основной этап). И для получен-
ных чисел уже с помощью операции +1 одно преобразуется в другое (средний
этап). Обсудим более детально, как правильно выбирать параметры k, l и сто-
рону округления. Интуитивно понятно, что сложность перехода от числа a
к числу a

2k
c округлением вниз образуется из k делений и примерно (асимп-

тотически) k
2 вычитаний— количество 1 среди последних k битов числа a.

Аккуратно это можно обосновать, применив лемму 2 и ее разложение в виде
суммы со знаком некоторых отрицательных степеней двойки. Здесь крайне
важно, что в двоичном представлении числа a чередуются 0 и 1, ведь иначе
несколько подряд идущих 1 могли бы нам сэкономить количество операций
±1. То же самое можно сказать и про округление вверх, но там уже важно
будет не количество 1 среди последних k битов, а количество 0. В любом слу-
чае, асимптотически опять получаем 3

2k операций. С параметром l ситуация
полностью аналогична. Далее можно заметить, что если параметры k, l да-
леки друг от друга, то нам выгодно сблизить их, прибавив к меньшему 1, а
из большего отняв 1. Тем самым можно считать, что k, l отличаются друг от
друга не больше чем на маленькую константу. Наконец, замечаем, что если
параметры k, l уменьшить одновременно на 1, то на основном этапе мы по-
теряем примерно 3 операции, а вот выигрыш от преобразований сложения в
среднем этапе будет больше. Тем самым оптимальной будет ситуация, когда
параметры k, l примерно равны 2s. В этом случае на среднем этапе мы почти
ничего не потеряем (числа почти одинаковы и равны маленьким значениям),
а основной этап даст 3

2(2s) + 3
2(2s) = 6s = 3 log2 n · (1 + o(1)) операций.
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О классах сверхфункций, замкнутых
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Работа относится к теории функциональных систем. Рассматриваются
обобщения булевых функций, называемые сверхфункциями. Сверхфунк-
ция— это произвольное непустое множество булевых функций, зависящих от
одних и тех же переменных. На множестве сверхфункций можно определить
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операции суперпозиции (как объединение всевозможных суперпозиций буле-
вых функций, входящих во все сверхфункции), введения и удаления фиктив-
ных переменных и другие. Отметим, что сверхфункции можно также считать
обобщением понятия гиперфункций—функций, определенных на наборах из
нулей и единиц и принимающих значения из множества {0, 1, {0, 1}} (cм.,
например, [1, 2]). Семейство классов сверхфункций, замкнутых относитель-
но операций суперпозиции, добавления и удаления фиктивных переменных и
операции перехода к подмножеству, изучалось в работах [3, 4]. В данной ра-
боте рассматривается семейство сверхфункций с теоретико-множественными
операциями и операцией отрицания.

Множества всех булевых функций и всех сверхфункций обозначаются че-
рез P2 и P2 соответственно; через P2(n) и P2(n) обозначаются множества бу-
левых функций и сверхфункций соответственно, зависящих от n фиксирован-
ных переменных. Пусть F = {f1(x1, . . . , xn), . . . , fm(x1, . . . , xn)}— сверхфунк-
ция, f1, . . . , fm ∈ P2(n). Функции f1, . . . , fm будем называть компонентами
сверхфункции F и писать fi ∈ F . Результатом применения операции отрица-
ния к сверхфункции F будем называть сверхфункцию F = {f 1, . . . , fm}. До-
полнением сверхфункции F будем называть сверхфункцию ¬F , состоящую
из всех функций из P2(n) \ F . Далее, пусть F (x1, . . . , xn) и G(x1, . . . , xn) —
две сверхфункции, зависящие от одних и тех же переменных. Объединением
F ∪ G сверхфункций F и G будем называть объединение множеств функ-
ций, входящих в F и G, пересечением F ∩ G сверхфункций— пересечение
множеств входящих в них функций.

На множестве P2 всех сверхфункций определим операцию замыкания:
пусть F ⊆ P2, тогда замыкание [F] множества F— это множество всех сверх-
функций, которые получаются из F применением операций объединения, пе-
ресечения, дополнения и отрицания. Легко видеть, что для так определенной
операции замыкания выполняются основные свойства замыкания, в частно-
сти, для любого F ⊆ P2 выполняется [[F]] = [F]. Множество F сверхфункций
называется замкнутым, если [F] = F.

Пусть F—множество сверхфункций, зависящих от переменных x1, . . . , xn.
По множеству F построим разбиение ∆F множества P2(n) на непересекаю-
щиеся непустые подмножества. Будем говорить, что f(x1, . . . , xn) —функция
1-го типа, если для каждой сверхфункции F ∈ F выполняется одно из двух
соотношений: f, f ∈ F или f, f 6∈ F . Остальные функции из P2(n) будем на-
зывать функциями 2-го типа. Далее, пусть f и g—функции 1-го типа. Будем
говорить, что пары функций f, f и g, g эквивалентны, если для каждой сверх-
функции F ∈ F эти пары одновременно входят или не входят в F . Указанное
отношение эквивалентности разбивает все функции 1-го типа на подмноже-
ства. Пусть теперь f и g—функции 2-го типа. Будем говорить, что функции
f и g эквивалентны, если для каждой сверхфункции F ∈ F функции f и g
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входят или не входят в F одновременно и функции f и g также входят или
не входят в F одновременно. Таким образом, получили разбиение множества
всех функций 2-го типа на подмножества. Все построенные таким образом
подмножества функций из P2(n) образуют семейство ∆F.

Утверждение. Пусть F ⊆ P2(n). Замыкание множества F состоит из
всех сверхфункций, получающихся объединением некоторых подмножеств
булевых функций из семейства ∆F.

Систему F сверхфункций из P2(n) назовем n-полной, если [F] = P2(n).

Следствие 1. Система сверхфункций F = {F1, . . . , Fk} из P2(n) является
n-полной тогда и только тогда, когда выполняются два условия: 1) для
любой булевой функции f ∈ P2(n) в F найдется сверхфункция, содержащая
ровно одну из функций f, f , 2) для любых двух функций g, h ∈ P2(n), таких
что g 6= h, в F найдется сверхфункция, содержащая ровно одну из функций
g, h или ровно одну из функций g, h.

Пусть ∆ —разбиение множества P2(n) на непустые непересекающиеся под-
множества. Будем говорить, что семейство F сверхфункций из P2(n) порож-
дается разбиением ∆, если в F содержатся всевозможные сверхфункции, ко-
торые получаются объединением некоторых подмножеств из ∆.

Разбиение ∆ множества P2(n) на непустые непересекающиеся подмноже-
ства A1, . . . , Ak будем называть правильным, если каждое подмножество
можно отнести к одному из двух типов: 1) если f ∈ Ai, то f ∈ Ai, 2) ес-
ли f ∈ Aj, то f 6∈ Aj и при этом если функции f1, . . . , fl лежат в одном и
том же подмножестве, то функции f 1, . . . , f l также лежат в одном и том же
подмножестве. Заметим, что если разбиение ∆ правильное, то порожденное
им множество сверхфункций является замкнутым классом.

Следствие 2. Множество замкнутых классов сверхфункций в P2(n) совпа-
дает с множеством классов, порожденных правильными разбиениями мно-
жества P2(n).

Работа выполнена при финансовой поддержке Минобрнауки России в рам-
ках реализации программы Московского центра фундаментальной и при-
кладной математики по соглашению № 075-15-2022-284.
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При решении задач кодирования информации для последующей работы с
ней в компьютере бывает полезно, а иногда и необходимо, иметь описание
объекта исследования в хорошо структурированном виде, которое позволя-
ет воспроизвести в кодовом пространстве структуру кодируемого объекта и
использовать сохраняемые данные для их эффективной обработки [1]. От-
метим, что структурированное кодирование, предполагая сохранение коди-
рующим отображением различного типа свойств, позволяет распознавать и
корректировать «ошибки» искажения при передаче или хранении информа-
ции, анализируя выполнение или невыполнение сохраняемых отображением
свойств. Другой прикладной аспект такого подхода состоит в том, что при
полном или частичном (например, локально изометрическое кодирование)
воспроизведении в кодовом пространстве структуры исходного кодируемого
множества появляется возможность работы с данными уже в их машинных
кодах с использованием операций, взаимосвязанных с архитектурой и специ-
фикой компьютера. Это бывает удобно и может ускорить процесс обработки
данных.

Рассмотрим сказанное на примере вложений графов в n-мерные булевы
кубы, в частности, кодирования сеточного табло (двумерной целочисленной
решётки конечного размера) и вариантов его вложения в гиперкуб. Мы до-
полняем исследованное ранее локально изометрическое кодирование табло и
кодирование в классе отображений ограниченного искажения [2, 3] рассмотре-
нием интервальных вложений специального вида и кодирования, сохраняю-
щего структуру и отделимость элементов метрических структур: кодируемого
множества (табло) и кодового пространства (гиперкуб с метрикой Хемминга).

Пусть G и H — связные графы с метрикой пути, e = (u, v) —ребро в G,
и инъективное отображение f : G → H множества вершин V (G) в V (H)
удовлетворяет двум условиям:
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1) для любых двух инцидентных ребер e1 = (u, v1), e2 = (u, v2) в G имеем
f(e1) ∩ f(e2) = f(u),

2) для любых не инцидентных ребер ei и ej выполняется f(ei) ∩ f(ej) = ∅,
где f(e) —метрический отрезок вершин f(u) и f(v) в H,
то есть множество всех вершин w графа H, для которых
ρH(f(u), w) + ρH(w, f(v)) = ρH(f(u), f(v)). Если H — булев гиперкуб
In и для вложения f : G→ In выполнены условия (1), (2), а все метрические
отрезки f(e) в In (то есть подкубы) имеют одинаковую размерность, равную
k, k < n, то вложение называется k-интервальным.

Проиллюстрируем метод построения k-интервального вложения
f : N 2

m → In двумерной целочисленной решётки N 2
m = Nm × Nm размера

m×m с расстоянием ρN2(u, v) = |x1−x2|+|y1−y2|, где Nm = {0, 1, . . . ,m−1}.
В основе метода лежит интерпретация задачи в терминах комбинаторики
слов, которую автор применял для решения задач структурированного
кодирования, конструкций вложений графов в гиперкубы, описания дина-
мики функционирования дискретных моделей генных сетей и др. Выберем
значения параметров m = 8, k = 2, n = 10, заметив, что конструкция будет
понятна и в общем случае, и что она также обобщается на решётки размер-
ности большей двух. Определим условия, которым должна удовлетворять
последовательность в алфавите 〈1, 2, 3, 4, 5〉 ортов пятимерного куба, которая
определяет 2-интервальное вложение f : N8 → I5 цепи N8. Нетрудно понять,
что условие (1) будет выполняться, поскольку отображение f инъективно.
Метрические отрезки ребер цепи N8 будут подкубами размерности k = 2,
то есть квадратами. По определению интервального вложения эти квадраты
должны иметь общими лишь вершины, являющиеся образами узлов решетки
N 2

8 . Поэтому 2-интервальное вложение f : N8 → I5 удобно задать словом
длины 14, которое разделено на блоки длины 2: X = 1 2.3 4.1 2.3 5.1 2.3 4.1 2.
Легко проверяется, что в любом подслове-отрезке слова X есть буква,
входящая в это подслово нечетное число раз, то есть в пятимерном кубе
цепь, определяемая словом X, не имеет самопересечений. Перестановке двух
букв внутри любого блока соответствует 2 варианта прохождения квадрата,
и легко проверить, что действие этих перестановок на слово X не приводит
к самопересечению. Это означает, что свойства (1) и (2) 2-интервальности
вложения f : N8 → I5 выполнены. По слову X кодирующее отображение
f : N 2

8 → I10 определяется стандартным образом. Однако надо учесть, что в
последовательности кодовых слов длины 5 α̃0, α̃1, α̃2, . . . , α̃14, α̃0 = (00000),
нужно выбрать подпоследовательность слов с четными индексами. Тогда 2-
интервальное вложение f : N 2

8 → I10, определяющее кодирование решётки,
задаётся отображением f(x, y) = α̃2xα̃2y вершин (x, y) двумерной целочис-
ленной решётки в кодовые слова длины 10, образованные конкатенацией
кодовых слов длины 5. Если для работы с табло нужны не вершины клеток
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его решётки, а сами клеточные области, то их кодирование осуществляется
переходом к двойственному планарному графу и аналогично описанному.

В заключение о задачах, в которых сохранение структуры кодируемых
объектов должно сочетаться со свойствами их отделимости и помехоустой-
чивости. Это связано с двумя различными понятиями отделимости и окрест-
ности. Шаровая окрестность и интервальное замыкание. На примере табло
и его кодирования с шаровой окрестностью, например, радиуса 1, эта задача
решается в [3]. В общем случае задача трудна, поскольку содержит в качестве
подзадачи результаты по оценкам мощности цепных кодов и их конструкции.
Если в аналогичной постановке задачи достаточно использования метриче-
ской интервальной окрестности, используя вместо шаров, например, 2-интер-
вальное замыкание, то задача решается с помощью несложной конструкции
и построения соответствующего алгоритма вложения.
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Постановка задачи

Рассматривается задача составления расписания выполнения заказов m кли-
ентов, заданных множеством M = {1, . . . ,m}, каждый из который харак-
теризуется своим (одним) заказом. Обозначим множество различных про-
дуктов через N = {1, . . . , n}. Заказ каждого клиента состоит из некоторого
подмножества множества продуктов. Заданы следующие входные данные за-
дачи: длительность производства pij > 0 продукта j для клиента i, величина
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начальной переналадки sj > 0 для производства продукта j, длительность
переналадки sjj′ > 0 с производства продукта j на продукт j′, где j 6= j′,
∀j, j′ ∈ N , ∀i ∈M .

Такая задача ранее исследовалась в [1, 2], где в качестве критериев по-
строения оптимального расписания ставились: минимизация суммы момен-
тов завершения выполнения заказов клиентов; максимизация суммы весов
заказов, выполненных в срок. Задачи рассматривались как однокритериаль-
ные (несколько задач с одной моделью, но различными критериями). Реше-
ние задается в виде перестановки операций o = (i, j), где пара (i, j) означает
производство продукта j для клиента i. Тогда множество всех операций обо-
значим через O = {(i, j)| ∀i ∈M, ∀j ∈ N}.

В данной работе предлагается рассмотреть двухкритериальную задачу с
критериями минимизации суммы моментов завершения выполнения заказов
и минимизации момента завершения выполнения последнего заказа и иссле-
довать её множество Парето [3, 4].

Математическая модель и множество Парето

Будем предполагать, что в заказе каждого клиента присутствует n продук-
тов. Описанная выше модель задается следующей моделью целочисленного
линейного программирования, в которой расписание кодируется в виде буле-
ва вектора x длины nm с компонентами

xok =

{
1, если операция o ∈ O находится в позиции k ∈ K,
0 иначе; ∑

k∈K

xok = 1 ∀o ∈ O, (1)

∑
o∈O

xok = 1 ∀k ∈ K, (2)

tf1 >
∑
o∈O

xo1(po + s′o), (3)

tfk > tfk−1 + po +
∑
o′∈O

xo′,k−1so′o −H(1− xok) ∀k ∈ {2, . . . , nm}, ∀o ∈ O, (4)

Ti > tfk −H(1− xok) ∀k ∈ K, ∀o ∈ O, (5)

Ti > 0, tfk > 0 ∀i ∈M, ∀k ∈ K, (6)
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где: tfk —момент завершения операции, находящейся в позиции k ∈ K; Ti—
момент завершения выполнения заказа клиента i ∈ M ; H —некоторая боль-
шая константа; K = {1, . . . , nm}. Здесь длительности и переналадки приве-
дены с индексами операции o = (i, j), их значения естественным образом по-
лучаются из длительностей и переналадок соответствующего продукта. Кри-
терий f = (f1, f2) будет иметь компоненты, каждая из которых рассматри-
вается на минимум

f1 =
∑
i∈M

Ti, f2 = max
i∈M

Ti. (7)

Обозначим множество допустимых решений X = {xok ∈ {0, 1} | o ∈ O,
k ∈ K : (1)–(6)}. Пусть множество Y = f(X). Возьмем задачу, в которой все
допустимые моменты завершения заказов T (x) ∀x ∈ X являются целочис-
ленными векторами. Исследуем множество Парето P (Y ) такой задачи.

Рассмотрим m-мерное пространство моментов завершения выполнения за-
казов (T1, . . . , Tm), вектор из данного пространства будем обозначать че-
рез T . Введем следующие множества векторов T′ = {arg minx∈X f1(T (x))},
T′′ = {arg minx∈X f2(T (x))}. Если T′ ∩ T′′ 6= ∅, то во множестве Парето
P (Y ) будет единственная точка. В случае T′ ∩T′′ = ∅, возьмем максималь-
ную компоненту по каждому вектору из T′, далее выберем среди этих зна-
чений минимальное: t′ = min{maxi∈M Ti | ∀T ∈ T′}. Вектор T , на котором
было получено значение t′, даст парето-оптимальную точку в пространстве
критериев (f1, f2). Далее, возьмем границу отрицательного ортанта в про-
странстве (T1, . . . , Tm), перенесенного в точку (t′ − 1, t′ − 1, . . . , t′ − 1). Отри-
цательный ортант является поверхностью уровня функции f2. Такой ортант
с вершиной в точке (t′ − 1, t′ − 1, . . . , t′ − 1) может дать парето-оптималь-
ную точку, у которой f1(T ) > min f1. Далее, возьмем ортант с вершиной в
точке (t′ − 2, t′ − 2, . . . , t′ − 2), который потенциально может содержать еще
одну парето-оптимальную точку. Такую процедуру будем продолжать, пока
не придём к ортанту с вершиной в точке (t′′, t′′, . . . , t′′) ∈ T′′. На каждой та-
кой итерации существует не более одной парето-оптимальной точки в смысле
критерия f = (f1, f2). Таким образом, пришли к следующему утверждению.

Утверждение. Мощность множества Парето P (Y ) задачи (1)–(7) имеет
следующую оценку сверху: |P (Y )| 6 t′ −minx∈X f2 + 1.

Возьмем задачу, в которой все переналадки sj, sjj′ равны между собой.
Тогда в силу критерия f их можно считать равными нулю. В таком слу-
чае любая перестановка x ∈ X дает одно и тоже значение критерия f2, т. е.
по факту задача является однокритериальной в смысле критерия f1. Зна-
чит, множество Парето P (Y ) содержит одну точку. В таком оптимальном
расписании производства продуктов для каждого клиента должны быть вы-
полнены без переключения на производство продукта другого клиента, т. е.
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сначала все продукты одного клиента, затем другого и так далее. Продукты
должны быть упорядочены по возрастанию сумм длительностей производ-
ства заказов. Поиск такого расписания является полиномиально разрешимой
задачей.

В общем случае, когда переналадки и длительности являются произволь-
ными значениями, задача поиска какого-либо парето-оптимального решения
является NP-трудной. Можно искать приближенное решение с гарантиро-
ванной точностью, например, следующим образом. Пусть имеется ρ1-прибли-
женное решение x(1) для критерия f1 и ρ2-приближенное решение x(2) для
критерия f2. Рассмотрим комбинацию расписаний, когда сначала до момента
f2(x

(2)) берется часть расписания x(2) (заказы, которые завершают обслужи-
вание до момента f2(x

(2))), а завершающая часть расписания берется из x(1).
Такая комбинация гарантирует (2ρ1, 2ρ2)-аппроксимацию парето-оптималь-
ного решения.

Исследование выполнено за счет гранта Российского научного фонда № 22-
71-10015, https://rscf.ru/project/22-71-10015/.
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Введение

В работе рассматривается задача составления расписаний на нескольких ма-
шинах и исследуется ее вычислительная сложность в случае дополнительных
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ограничений. Здесь исследуются варианты задачи c предписаниями операций
в позициях машин и учетом ресурсов невозобновимого типа. Выделяются NP-
трудные частные случаи и строятся алгоритмы с гарантированными оценка-
ми точности на основе подходов списочного типа для критерия минимизации
длины расписания. Устанавливаются новые свойства дополнительных огра-
ничений, позволяющие обобщать известные ранее результаты при выполне-
нии условий на нижнюю границу целевой функции.

Постановка задачи

Рассматривается задача составления расписаний, где независимое множество
работ J = {j1, . . . , jn} планируется к выполнению на m машинах. Длитель-
ности работ зависят от потребления ресурсов по правилу

pj(rj) =

(
Wj

rj

)κ
,

где Wj — требуемый объем работы j ∈ J , rj —потребляемый объем ресурса
работой j ∈ J , 0 < κ 6 1 — заданная константа. Общее ограничение на объем
потребляемого ресурса обозначим через R. В качестве критерия рассматри-
вается длина расписания, то есть момент окончания последней работы.

Также рассматривается вариант задачи, когда имеют место предписания в
позициях машин на выполнение работ:Xik —множество работ, которые могут
выполняться в позиции k машины i = 1, . . . ,m.

Алгоритм для ограничений по ресурсу

Для задачи предлагается следующий алгоритм с гарантированной оценкой
точности. Строим модель выпуклого программирования, обозначая перемен-
ную, отвечающую за длительность работы j ∈ J , через pj:

Cmax → min, (1)

pj 6 Cmax, j ∈ J, (2)
1

m

∑
j∈J

pj 6 Cmax, (3)

∑
j∈J

Wjp
−1/κ
j 6 R, (4)

pj > 0, j ∈ J. (5)
Далее, используя полученные длительности работ, строим расписание по

следующему правилу:
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1. Работы упорядочиваются по невозрастанию длительностей. Обозначим по-
лученную последовательность через π.

2. Все машины запускаются на выполнение первых m работ из последова-
тельности π.

3. Как только некоторая работа завершает свое выполнение, на соответству-
ющей машине запускается очередная работа из последовательности π.

Утверждение 1. Алгоритм позволяет получить
(

4
3 −

4
3m

)
-приближенное

решение задачи с ограничением по невозобновимому ресурсу.

Доказательство основано на адаптации подходов из работ [1, 2].

Утверждение 2. Задача с ограничением по невозобновимому ресурсу явля-
ется NP-трудной.

Доказательство основано на сводимости задачи Разбиение [3] к случаю
двух машин и общего объема ресурса равного общему объему работ.

Алгоритм для предписаний работ

Предположим, что общее число позиций, где доступна загрузка машин, сов-
падает с общим числом работ. Перенумеруем позиции по общему прави-
лу увеличения номера индекса на машине и увеличения индекса машины.
Пусть Xi обозначает множество работ, которые могут выполняться в пози-
ции i = 1, . . . , n.

Построим двудольный граф G = (Jn, J, E). Вершины левой доли
Jn = {1. . . . , n} соответствуют позициям, а вершины правой доли J —рабо-
там. Есть ребро между левой и правой долями, если соответствующая работа
может выполняться в позиции. Пример представлен на рис. 1.

Перебор допустимых расписаний соответствует перебору совершенных
паросочетаний [4] в графе G = (Jn, J, E) и приводит к трудоемкости
O(n2.5 + n2npm) с учетом времени O(n) на вычисление целевой функции, где
npm—число совершенных паросочетаний. Здесь время O(n2.5) соответствует
вычислению первого совершенного паросочетания, а время O(n2npm) исполь-
зуется для перехода от текущего совершенного паросочетания к следующему
и расчета требуемых метрик.

Случай, когда все предписания содержат не более двух элементов и имеется
одна машина, исследовался в работе [5].

Утверждение 3. Задача с предписаниями работ является NP-трудной.

Доказательство основано на сводимости задачи Упорядоченное Разбие-
ние [3] к случаю двух машин.
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Рис. 1: Пример задачи с двумя машинами и четырьмя работами. Представ-
лены двудольный граф G = (J4, J, E) и его совершенные паросочетания.

Исследование выполнено за счет гранта Российского научного фонда № 22-
71-10015, https://rscf.ru/project/22-71-10015/.
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О предикатном определении минимальных
клонов трехзначной логики
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Московский государственный университет имени М.В. Ломоносова; artsemzdanovich@mail.ru

Минимальные клоны

Пусть N = {1, 2, . . . }—множество натуральных чисел, Ek = {0, 1, . . . , k− 1}.
Пусть En

k 
 {0, 1, . . . , k − 1}n, P n
k 
 {f | f : En

k → Ek}, Pk 

⋃
n>1 P

n
k . Эле-

менты Pk назовем функциями k-значной логики. Стандартным образом на
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множестве Pk определяем оператор замыкания [ ] относительно операций су-
перпозиции. Множество M ⊆ Pk называется замкнутым (замкнутым клас-
сом), если [M ] = M . Клоном называется всякое замкнутое множество функ-
ций, содержащее тождественную функцию x. Клон называется минималь-
ным, если он не содержит никакого собственного клона, отличного от [{x}].

Как показал Emil Post [1], в P2 существует 7 минимальных клонов: [{x, 0}],
[{x, 1}], [{x}], [{x∨y}], [{x∧y}], [{x⊕y⊕z}], [{xy∨yz∨xz}]. Однако отметим,
что на текущий момент нет полного описания минимальных клонов Pk, при
этом имеет место [2] следующая

Теорема 1 (Ivo Rosenberg). Пусть A—минимальный клон в Pk, тогда су-
ществует функция f ∈ P n

k , такая что A = [{x} ∪ {f}], а также выполня-
ется одно из следующих условий:

1. n = 1.
2. n = 2 и f —идемпотентная функция, то есть f(a, a) = a для любого
a ∈ Ek.

3. n = 3 и f —функция минорирования (minority function), то есть

∀a, b ∈ Ek : f(a, a, b) = f(a, b, a) = f(b, a, a) = b.

4. n = 3 и f —функция голосования или мажорирования (majority function),
то есть

∀a, b ∈ Ek : f(a, a, b) = f(a, b, a) = f(b, a, a) = a.

5. n ∈ {3, 4, . . . , k} и f —полуселектор (semiprojection), то есть суще-
ствует i, такое что для любых a1, a2, . . . , an ∈ Ek, удовлетворяющих
|{a1, a2, . . . , an}| 6 n− 1, выполняется f(a1, a2, . . . , an) = ai.

Существует только конечное количество минимальных клонов в Pk. Доба-
вим, что с помощью компьютера удалось полностью описать минимальные
клоны в случае k = 3, k = 4. Результат для k = 3 представлен ниже [3].

Теорема 2 (Béla Csákány). В P3 есть ровно 84 минимальных клона. Они
могут быть получены с помощью внутренних автоморфизмов в P3 из сле-
дующих клонов:
— [{c0}], [{c1}], [{c2}], [{c3}], где c0, c1, c2, c3 — унарные функции, определён-

ные следующей таблицей:
x c0 c1 c2 c3

0 1 1 0 1
1 1 0 1 2
2 1 2 1 0
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— [{bi}] для i ∈ {1, 2, . . . , 12}, где b1, b2, . . . , b12 —идемпотентные бинарные
функции, определённые следующей таблицей:

x y b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12

0 1 1 0 1 1 1 1 0 0 0 0 1 2
1 0 1 1 1 1 1 1 1 1 1 1 1 2
0 2 1 0 0 0 0 0 0 1 0 1 0 1
2 0 1 1 0 2 0 2 0 1 1 2 0 1
1 2 1 1 1 1 1 1 1 1 1 0 2 0
2 1 1 1 1 1 2 2 1 2 2 2 2 0

— [{mi}], [{sj}] для i ∈ {1, 2, 3}, j ∈ {1, 2, 3, 4, 5}, где m1,m2,m3 —функции
мажорирования, определённые следующей таблицей, и s1, s2, s3, s4, s5 —
полуселекторы на первую переменную, определённые следующей табли-
цей:

x y z m1 m2 m3 s1 s2 s3 s4 s5

0 1 2 1 0 0 1 0 0 1 1
0 2 1 1 1 0 1 0 0 1 2
1 0 2 1 1 1 1 1 1 0 0
1 2 0 1 0 1 1 1 1 0 2
2 0 1 1 0 2 1 1 0 2 0
2 1 0 1 1 2 1 1 1 2 1

Предикатная описуемость

Пусть Rn
k 
 {ρ | ρ : En

k → {0, 1}}, Rk =
⋃
n>1R

n
k . Назовем элементы Rk пре-

дикатами k-значной логики. Функция f ∈ P n
k сохраняет предикат ρ ∈ Rh

k если
для любых (ai,1, ai,2, . . . , ai,h) ∈ Rh

k, i ∈ {1, . . . , n} набор (b1, b2, . . . , bh) ∈ Rh
k ,

где bi определены как f(a1,i, a2,i, . . . , an,i).
Обозначим за Pol(ρ) клон, состоящий из f ∈ Pk, сохраняющих ρ ∈ Rk.

Обозначим для S ⊆ Rk, Pol(S) = ∩ρ∈SPol(ρ). Известно, что для любого
клона F ⊆ Pk существует S ⊆ Rk такое, что F = Pol(S). Если существует
конечное такое S, клон называется предикатно-описуемым.

К настоящему моменту известно, что все минимальные клоны, удовлетво-
ряющие условиям 1), 3), 4) теоремы Розенберга, являются предикатно-опи-
суемыми. Также была доказана предикатная описуемость и найдено преди-
катное задание для [{b1}], [{b3}], [{b4}], [{b11}], [{b12}], [{s5}].

Определим множество предикатов, считая a, b, c ∈ E3:
— ρ0,1

1in3 
 {(x1, x2, x3) ∈ {0, 1}3 | ∃! i : xi = 1};
— ρ0,1

1in3,2→2 
 (2, 2, 2) ∪ ρsel 0,1;
— ρsame→a;b 
 {(x1, x2, x3) : ((x1 = x2) ∨ (x3 = a)) ∧ (x3 ∈ {a, b})};
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— ρa6b6c 
 {(a, a), (a, b), (a, c), (b, b), (b, c), (c, c)};
— ρ0→a;1→b;2→c 
 {(0, a), (1, b), (2, c)};
— ρ0→a;1→∀ 
 {(0, a), (1, 0), (1, 1), (1, 2)};
— ρ0→a,b;1→∀ 
 {(0, a), (0, b), (1, 0), (1, 1), (1, 2)}.

Пусть σ2 
 ρ0→1;1→1;2→2, σ8 
 ρ0→2;1→1;2→0. Автор установил следующие
теоремы.

Теорема 3. [{b2}] =
= Pol(ρ0,1

1in3, ρ0→1;1→∀, ρ0→2;1→∀, ρ0→1,2;1→∀, ρsame→1;2, ρσ2, {2}).

Теорема 4. [{b7}] = Pol(ρ0,1
1in3, ρ

0,1
1in3,2→2, ρsame→0;2, ρ06261, {2}).

Теорема 5. [{b8}] = Pol(ρ0,1
1in3, ρ06162, ρσ8).

Из данного предикатного задания, в частности, следует, что минимальные
клоны [{b2}], [{b7}], [{b8}] предикатно описуемы.
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В данной работе рассматривается эффективная реализация квантового
хеширования. Квантовое хеширование позволяет проектировать эффектив-
ные по памяти квантовые алгоритмы и строить защищенные коммуникаци-
онные протоколы. Мы предлагаем алгоритм, позволяющий балансировать
между числом CNOT-гейтов (глубиной схемы) и точностью углов поворота.
Современные квантовые вычислители являются устройствами NISQ (Noisy
Intermediate-Scale Quantum) эры и чувствительны к точности углов.
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Квантовое хеширование

Квантовое хеширование впервые было определено в [1]. В данной работе
рассматриваются амплитудная [1] и фазовая [2] формы квантового хеши-
рования. В общем случае для x ∈ Zq n-кубитный хеш определяется как
|ψ(x)〉 = 1√

d

∑d−1
j=0 |j〉 (Ra (θj) |qn〉), где θj =

4πsjx
q и S = {s0, . . . , sd−1} ⊆ Zq —

набор параметров такой, что 1
d

∣∣∣∑d−1
j=0 e

i
2πsjx

q

∣∣∣ 6 ε. Заметим, что n = log d + 1

и d = O
(

log q
ε2

)
. Для амплитудной формы a = y, т. е. используются повороты

вокруг оси y, и |qn〉 = |0〉. Для фазовой формы a = z, т. е. используются
повороты вокруг оси z, и |qn〉 = |1〉.

Схема для реализации квантового хеширования

Схема для реализации квантового хеширования представлена на рисунке 1.
Кроме всего прочего, она состоит из n-кубитных контролируемых поворотов
целевого n-го кубита вокруг оси a, в которых первые n−1 кубитов задейство-
ваны в качестве контролирующих. Структура схемы такова, что повороты
осуществляются, используя всевозможные состояния контролирующих куби-
тов. Такая группа гейтов называется оператором равномерно контролируе-
мого поворота UCRn−1

a (uniformly controlled rotation). Наша задача сводится
к эффективному разложению гейта UCRn−1

a .

Рис. 1: Схема для реализации квантового хеширования.

Оптимизация схемы

Существует эффективная декомпозиция UCRn−1
a , изложенная в работе [3].

Она может быть получена путём рекурсивного применения схемы, представ-
ленной на рисунке 2. В этом случае для декомпозиции требуется d CNOT-
гейтов и d Ra-гейтов с точностью углов поворота O

(
1
d2d

)
. Видим, что здесь

фигурируют более чувствительные углы, так как изначальная точность была
O
(

1
2d

)
.



52 Зиннатуллин И. Г., Хадиев К.Р.

Рис. 2: Шаг рекурсивной декомпозиции UCRn−1
a .

Рассмотрим вспомогательную конструкцию, которая пригодится нам даль-
ше. Используя разложение [4, лемма 7.9], осуществляем декомпозицию кон-
тролируемых поворотов, представленную на рисунке 3. Стоит отметить, что
эта схема симметрична относительно вертикальной оси. Данная декомпози-
ция примечательна тем, что для дальнейшего разложения контролируемых
отрицаний Cn−2(X) кубит с номером n − 1 можно использовать в качестве
анциллы. Известно [4], что в этом случае требуется 24l − 52 CNOT-гейтов,
где l—число контролирующих кубитов.

Рис. 3: Декомпозиция контролируемо-
го поворота вокруг оси a. Рис. 4: Фрагмент схемы, реализующей

UCRn−1
a .

Нами предлагается применить к исходному гейту UCRn−1
a рекурсивно k

раз схему, изображенную на рисунке 2. После k итераций получаем схему, со-
держащую 2k CNOT-гейтов и 2k UCRn−k−1

a гейтов. Точность углов поворота
при этом возрастает до O

(
1

2d+k

)
. Далее для гейта UCRn−k−1

a строим разложе-
ние, в котором осуществляем перебор контролируемых поворотов, используя
код Грея. Использование кода Грея удобно тем, что соседние кодовые сло-
ва отличаются ровно в одной позиции, поэтому переход из одного состояния
контролирующих кубитов в другой осуществляется путём применения одно-
го отрицания. Различающаяся позиция определяет номер кубита, к которому
применяется отрицание.

Далее в получившейся схеме можно выделить 2n−k−2 фрагментов, изоб-
раженных на рисунке 4. Здесь мы для гейта R1 применяем декомпозицию,
представленную на рисунке 3, а для гейта R2 зеркальное отображение этой
же декомпозиции. В итоге получаем схему, которая представлена на рисун-
ке 5. Легко заметить, что обрамленные в рамку контролируемые отрицания
гасят друг друга.
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Рис. 5: Декомпозиция схемы на рис. 4.

Таким образом, общее число CNOT-гейтов равно 2k + 2n−1(24(n− k)− 97)
или 2k + d(24(log d − k) − 73). Отметим, что k 6 n − 5 = log d − 4. При
увеличении k глубина схемы уменьшается от O(log q log log q) до O(log q),
однако точность углов повышается от O (1/q) до O (1/(q log q)).

Исследование выполнено за счет гранта Российского научного фонда №
24-21-00406, https://rscf.ru/project/24-21-00406/.
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Постановка задачи

Пусть t(V,E) —дерево, содержащее n вершин, A = {1, 2, . . . , n}—множество
из n натуральных чисел. Взаимно однозначное отображение ϕ : V (t) → A
называется нумерацией вершин дерева t(V,E). При этом каждой вершине
vi ∈ V (t) ставится в соответствие номер ϕ(vi) ∈ A, каждому ребру
e = (vi, vj) —число ∆ϕ

e =| ϕ(vi)−ϕ(vj) |, а всему дереву t(V,E) соответствует
сумма ∆ϕ(t) =

∑
(vi,vj)∈E(t) | ϕ(vi) − ϕ(vj) |, где суммирование производится

по всем ребрам дерева t(V,E). Величина ∆ϕ(t) задает длину дерева t(V,E) на
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нумерации ϕ. Любая нумерация, на которой достигается minϕ ∆ϕ(t) = ∆(t),
называется минимальной нумерацией дерева t(V,E).

Задача построения минимальных нумераций для произвольных деревьев
достаточно сложна и решается с помощью нелинейных алгоритов [1–3]. Рас-
сматривались также её приближенные решения при различных ограничениях
на множество допустимых нумераций [4, 5]. Одно из таких ограничений соот-
ветствует представлению t(V,E) в виде корневых ориентированных дереьев
−→
t (V,E), в которых выделяется некоторая вершина vk — корень, с номером
ϕ(vk) = 1, из которой все остальные вершины дерева −→t (V,E) достижимы по
простым путям. Номера вершин мототонно растут вдоль всех путей. Такие
нумерации называются монотонными.

В [4] был предложен алгоритм построения минимальной монотонной ну-
мерации от заданного корня и было показано, что минимум длины дерева в
классе монотонных нумераций может превосходить минимум длины в классе
всех нумераций не более чем в 2 раза.

В доказательстве этой оценки использовалась минимальная монотонная
нумерация дерева −→t (V,E) от корня, совпадающего с вершиной, имевшей
первый номер при минимальной нумерации дерева t(V,E). В общем случае
эти вершины не всегда совпадают и возможно построение минимальной мо-
нотонной нумерации меньшей длины.

В работе рассматривается алгоритм выбора оптимального корня для де-
рева −→t (V,E), обеспечивающего его минимальную длину на множестве все-
возможных корневых ориентированных деревьев, сопоставляемых дереву
t(V,E).

Свойства минимальных монотонных нумераций деревьев

Пусть ϕ минимальная монотонная нумерация дерева −→t (V,E). Выделим
в −→t (V,E) путь σ1 из вершины ϕ−1(1) в вершину ϕ−1(n). При этом
из дуг, не принадлежащих пути σ1, образуются поддеревья разложения
tσi , i = 1, k, k < n, представляющие собой корневые ориентированные деревья,
«подвешенные» к вершинам пути σ1 за свои корневые вершины. Применяя к
ним предыдущее представление, получаем

Утверждение 1. Любой минимальной монотонной нумерации вершин кор-
невого ориентированного дерева соответствует его разложение на после-
довательность непересекающихся по дугам путей σi, i = 1, l, таких, что:
1) каждый путь начинается в корне того поддерева, в котором он выделя-

ется, и заканчивается в некотором его листе;
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2) номера вершин вдоль каждого пути монотонно растут, а нумерующие
последовательности всех поддеревьев разложения, образующихся в про-
цессе выделения путей, сплошные.

Выделим в дереве t(V,E) произвольную вершину vi ∈ V степени s(vi) = p
и все инцидентные ей ребра (vi, vr), r = 1, p. Любая вершина vq 6= vi связана
с вершиной vi единственной цепью. Будем говорить, что вершина vq принад-
лежит ветке, соединенной с вершиной vi по ребру (vi, vr), r ∈ 1, p, если в
vq можно попасть из vi по цепи, содержащей ребро (vi, vr). Число вершин в
ветке определяет её вес. В корневом ориентированном дереве ветки делятся
на выходящие, в них ведут дуги (vi, vr), r ∈ 1, p, из вершины vi, и одну вхо-
дящую, из вершины vr которой можно попасть в вершину vi по дуге (vr, vi),
r ∈ 1, p. Справедлива [6]

Теорема 1. Монотонная нумерация произвольного корневого ориентиро-
ванного дерева является минимальной тогда и только тогда, когда пути
σi, i = 1, l, выходят из вершин дерева по дугам, ведущим в ветки с наи-
большим весом.

Рассмотрим обход в глубину вершин корневого ориентированного дерева,
начиная с корня, в соответствии с ориентацией дуг. Перемещение по каждо-
му пути заканчивается в листе. Затем осуществляется возврат к предыдущей
вершине, из которой исходит хотя бы одна ещё не пройденная дуга, по кото-
рой продолжается обход вершин до тех пор, пока не вернемся в корень, все
исходящие дуги которого пройдены.

При использовани обхода вершин дерева в глубину из теоремы 1 получа-
ем краткую формулировку алгоритма построения минимальной монотонной
нумерации коневого ориентированного дерева от заданного корня.

Следствие 1. Нумерация корневого ориентированного дерева минимальна
тогда и только тогда, когда она проводится в соответствии с обходом
в глубину вершин дерева, начиная от корня, в порядке неубывания весов
веток.

В каждом дереве t(V,E) можно выделить вершину (две смежные верши-
ны), веса всех веток к которой (которым) не превосходят половины от обще-
го числа вершин. Эти вершины образуют центроид дерева. Входящие в него
вершины называются центроидными.

Следствие 2. При минимальной монотонной нумерации от любого корня
все ветки к центроидной вершине имеют сплошные нумерующие последо-
вательности.

Следствие 3. Оптимальный корень принадлежит одной из двух веток к
центроидной вершине с наибольшим весом.
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Алгоритм выбора оптимального корня

1. Выделить в дереве центроидную вершину.
2. Выбрать одну из двух веток к центроидной вершине с наибольшим весом.
3. В выбранной ветке построить минимальную монотонную нумерацию с кор-

нем в центроидной вершине.
4. Вершину, получившую наибольший номер, взять в качестве оптимального

корня.

Обоснование алгоритма

Рассмотрим минимальную монотонную нумерацию ориентированного дерева
с корнем в вершине, выбранной по алгоритму. Разобьем дуги дерева на три
непересекающихся подмножества: дуги ветки, содержащей корень, дуги, ис-
ходящие из центроидной вершины, и внутренние дуги веток, исходящих из
центроидной вершины.

Длина ветки, содержащей корень, минимальна, так как она равна её длине
при минимальной монотонной нумерации от центроидного корня. Это так,
поскольку, учитывая теорему 1, у обеих нумераций совпадают цепи первых
путей разложения и, следовательно, все поддеревья разложения.

Сумма длин дуг, исходящих из центроидной вершины, минимальна, учи-
тыва следствия 2 и 3. Внутренние дуги веток, исходящих из центроидной
вершины, разобьем на непересекающиеся подможества дуг, относящихся к
разным веткам, выходящим из центроидной вершины. Минимальность длины
каждой такой ветки следует из сплошности нумерующей последовательности
(следствие 2) и того, что по следствию 1 на каждой из них строится мини-
мальная монотонная нумерация с корнем в вершине, смежной с центроидной
вершиной.

Трудоемкость алгоритма не превосходит по порядку O(n log n).
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Задача о максиминном пути (кратко, ЗМП)— для заданных связного гра-
фа G = (V,E), пропускных способностей его ребер c : E −→ R>0 и вершин
s, t ∈ V найти b(s, t) = max

P∈Pst
min
e∈P

c(e), где Pst обозначает множество всех путей
между s и t.

ЗМП возникает в качестве отдельной подзадачи в алгоритме Эдмондса и
Карпа [1] для вычисления максимального потока в сети, а также в алгоритме
решения задачи о k-расщепляемом потоке [2]. Задача о максимальном пото-
ке в сети возникает, например, в математических моделях передачи электро-
энергии, планирования полетов, сетях связи. Вариант ЗМП, когда фиксиру-
ется s, а t пробегает все множество вершин, возникает в качестве подзадачи
в планировании расписания движения железнодорожного транспорта, см.,
например, [3].

ЗМП для графа с n вершинами и m ребрами может быть решена алгорит-
мом Камерини [4] за времяO(m). В этой работе автором рассматриваются две
разновидности задачи ЗМП и предлагаются эффективные алгоритмы для их
решения. В онлайновой задаче о максиминном пути (кратко, ОЗМП) требу-
ется так предобработать заранее известный граф (G, c), чтобы по результату
предобработки вычислять b(s, t) для любых задаваемых s, t ∈ V . В зада-
че о k максиминных путях (кратко, k-ЗМП) для заданных связного графа
G = (V,E), пропускных способностей его ребер c : E −→ R>0 и вершин
s1, t1, s2, t2, . . . , sk, tk ∈ V требуется найти b(s1, t1), . . . , b(sk, tk). Нам понадо-
бится следующая хорошо известная связь между оптимальными решениями
ЗМП и задачи о максимальном остовном дереве:

Утверждение 1. Пусть T —произвольное максимальное остовное дерево
графа (G = (V,E), c). Тогда, для любых s ∈ V, t ∈ V минимальная из про-
пускных способностей ребер на st-пути дерева T равна b(s, t).

Для решения онлайновой версии ЗМП воспользуемся модификацией jump-
pointers алгоритма [5], используемого для поиска наибольшего общего предка
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двух задаваемых вершин корневого дерева. В каждой вершине дерева будем
хранить, кроме вершин для прыжков, минимальное значение на этом прыж-
ке. Таким образом, во время подъема по дереву мы сможем агрегировать
значение минимума на нашем пути.

Наш алгоритм будет выглядеть следующим образом (подчеркиванием вы-
делена предобработка):

Шаг 1. Найти максимальное остовное дерево T графа (G, c)
алгоритмом Прима с использованием Фибоначчиевых куч.

Шаг 2. Применить к T модифицированный jump-pointers алгоритм.
Шаг 3. Вычислить b(s, t) и вернуть его значение.

Корректность алгоритма следует из утверждения 1. Сложность Шага 1
есть O(m + n log n), сложность Шага 2 есть O(n log n), а сложность Шага 3
есть O(log n). Поэтому итоговая сложность есть O(m+ n log n).

Для эффективного решения задачи k-ЗМП воспользуемся структурой дан-
ных «система непересекающихся множеств» (кратко, СНМ) для хранения
разбиения множества на подмножества и поддержки операций на подмно-
жествах (см., например, книгу [6]). Этот алгоритм использует следующие
обозначения:

— ind[v] —множество тех i, что si или ti принадлежит элементу СНМ, кото-
рый содержит v;

— Find(v) —поиск канонического элемента подмножества, которое содер-
жит v;

— Join(x, y) — замена двух подмножеств, имеющих канонические элементы
x и y, их объединением и назначение x в качестве канонического элемента
нового подмножества, а также транспонирование x и y в ind[x] и ind[y],
если

∣∣ind[y]
∣∣ > ∣∣ind[x]

∣∣;
— answer[i] = b(si, ti) для любого i ∈ [k].

Для заданных (G, c) и (s1, t1), . . . , (sk, tk) наш алгоритм выглядит следую-
щим образом:

Шаг 1. Инициализировать n-элементный массив ind пустыми
множествами.

Шаг 2. Инициализировать СНМ n синглетонами, каждый из которых
соответствует вершине G.

Шаг 3. Для каждого i ∈ [k] выполнить:
b(si, ti) := −∞, ind[si] := ind[si] ∪ {i}, ind[ti] := ind[ti] ∪ {i}.

Шаг 4. Упорядочить E по невозрастанию их пропускных способностей.
Шаг 5. В цикле по e = ab ∈ E:
Шаг 5.1. Вычислить x := Find(a), y := Find(b).



Каймаков К.В. 59

Шаг 5.2. Если x 6= y, то:
Шаг 5.2.1. Выполнить Join(x, y).
Шаг 5.2.2. В цикле по z ∈ ind[x] ∩ ind[y] присвоить answer[z] := c(e).
Шаг 5.3. Присвоить ind[x] := ind[x]⊗ ind[y].

Шаг 6. Вернуть answer[].

Корректность предложенного алгоритма следует из утверждения 1 и алго-
ритма Краскалла поиска максимального остовного дерева. Действительно, в
соответствии с ними значение b(si, ti) определяется именно в тот момент, ко-
гда возникает путь между si и ti в частичном оптимальном решении. Иными
словами, когда e соединяет вершины a и b из разных компонент связности,
a, si принадлежат одной из них и b, ti принадлежат другой. Следовательно,
i ∈ ind[x] и i ∈ ind[y]. В этот момент answer[i] = c(e) = b(si, ti) и это же вер-
но для всего множества ind[x]∩ ind[y]. Присваивание ind[x] := ind[x]⊗ ind[y]
гарантирует, что подмножество Tx с каноническим элементом x будет хра-
нить только те si или ti, что si ∈ Tx, ti 6∈ Tx или si 6∈ Tx, ti ∈ Tx.

Можно показать, что предположении того, что ind[] хранится хэш-множе-
ством, ожидаемое время работы предложенного алгоритма есть

O(m+ (n+ k) log n).

Автор выражает благодарность своему научному руководителю, д.ф.-м.н.,
проф. Малышеву Д.С. за постоянное внимание к работе, полезные советы и
замечания.
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Одним из разностных методов атаки на блочные шифры является метод
бумеранга, впервые опубликованный в работе [1]. Его преимущество заключа-
ются в том, что даже при наличии невысокой дифференциальной равномер-
ности, шифр всё равно может быть уязвим для разностных атак. В работе [1]
рассматривались шифрсистема COCONUT98 и другие блочные шифры, а
позднее метод был применен к 5-раундовому и 6-раундовому AES и другим
шифрам. Недавно была предложена атака методом бумеранга на 4-раундо-
вый алгоритм шифрования LILLIPUT-TBC-II-256 [2]. В настоящей работе
исследуются свойства квадратичных подстановок относительно такого пара-
метра, как бумеранговая равномерность, который характеризует стойкость
функции к данному методу. Приведены оценки её значений при различных
условиях. Представлен экспериментально полученный класс триномиальных
квадратичных подстановок, описаны его характеристики.

Основные определения и обозначения

Все упомянутые, но не отмеченные определения и обозначения можно уточ-
нить в работе [3].

Пусть F : F2n → F2n — векторная булева функция, заданная многочленом
над полем F2n из 2n элементов, «+»— операция сложения в поле.

Определение 1. Дифференциальной характеристикой векторной булевой
функции F называется величина, определенная следующим образом:

δF (a, b) = |{x ∈ F2n : F (x) + F (x+ a) = b}| ,
где a, b— элементы поля F2n. Дифференциальной равномерностью, соот-
ветственно, величина

δF = max
a,b∈F∗2n

δF (a, b) .

Пусть F —подстановка на F2n.

Определение 2. Бумеранговой характеристикой называется величина, за-
данная следующим образом:

βF (a, b) =
∣∣{x ∈ F2n |F−1 (F (x) + b) + F−1 (F (x+ a) + b) = a

}∣∣ ,
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где a, b— элементы поля F2n. Бумеранговая равномерность для функции F
есть максимальное значение из βF (a, b), за исключением случаев a = 0 или
b = 0:

βF = max
a,b∈F∗2n

βF (a, b).

Для любых a, b ∈ F2n и подстановки F справедливо
βF (a, b) > δF (a, b) .

Другие свойства бумеранговой равномерности хорошо описаны в статье [4].
Квадратичную функцию, представленную полиномом над F2n, без линей-

ной и константной частей будем называть однородной квадратичной функци-
ей. Пусть α = (α1, . . . , αn) — базис F2n над F2, обозначим −→x = (x1, . . . , xn) —
разложение x ∈ F2n по базису α. Положим, Mα ∈ Fn×n2n — такая матрица, что
Mα[i, j] = α2i−1

j для 1 6 i, j 6 n. Тогда каждой однородной квадратичной
функции

F (x) =
∑

16j<i6n

cijx
2i−1+2j−1 ∈ F2n[x]

соответствует матрица H = MTCFM , где M = Mα, CF —матрица n × n
такая, что CF [j, i] = CF [i, j] = cij для 1 6 j < i 6 n и CF [i, i] = 0 для i ∈ 1, n.

Результаты

В работе [3] исследовалась взаимосвязь показателя бумеранговой равномер-
ности со значениями дифференциальной характеристики. Было показано,
что если F + A—квадратичная подстановка, A— её аффинная часть, то

βF+A(a, b) = δF+A(a, b) +
∑

z∈U∗a,F (a)(F )

δF+A (z, b) , (1)

где множество U ∗a,b(F ) определено следующим образом:
Ua,b(F ) = {x ∈ F2n : F (x) + F (x+ a) = b} , U ∗a,b(F ) = Ua,b(F )\{0, a}.

С использованием формулы (1) были получены следующие результаты.

Утверждение 1. Пусть F — однородная квадратичная функция, A— аф-
финная, тогда для подстановки F + A и для любого a ∈ F∗2n такого, что
δF (a, F (a)) = δF+A, выполнено:

βF+A(a, F (b) + L(b)) > δF+A + δF+A(a, F (b) + L(b)),

где b ∈ U ∗a,b(F ), L—линейная часть A. При этом

βF+A(a, F (b) + L(b)) > δF+A + δF+A(a, F (b) + L(b)) + 2k,

если rank(Λ, γ↓) = rank(Λ) = n− k, где Λ и γ↓ определены соотношениями:
α · Λ = (−→a +

−→
b ) ·HT и α · γ↓ = F (a) + L(a), α— базис F2n.
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Оценка значений показателя бумеранговой равномерности была приведена
в работе [3], далее представлены достаточные условия для её улучшения.

Утверждение 2. Пусть F — квадратичная подстановка, δF = 2k. Если су-
ществуют такие a, b ∈ F∗2n, что δF (a, b) < δF и βF (a, b) = βF , то справед-
лива верхняя оценка:

βF 6 β, где β =

{
22k − 2k+1, при δF (a, b) = 0 и δF (a, F (a)) = δF ;

22k−t − 2k+1 + 2k−t, при δF (a, b) = δF
2t , t ∈ 1, k − 1.

Также исследовались некоторые конструкции квадратичных подстановок,
а именно триномиальные однородные квадратичные подстановки. Был полу-
чен следующий класс функций:

Утверждение 3. Пусть n > 1 —натуральное и нечетное число, α—при-
митивный элемент поля F2n, заданы параметры t ∈ 1, n, wt2(t) = 2,
0 6 k1 < k2 < k3 6 n−1, m ∈ 0, 2n − 2 и функция C(m, t, k1, k2, k3) принима-
ет множество из 2n+1

3 значений в поле F2n при фиксированных параметрах.
Тогда функции вида

x2k3t + α2m+1 · x2k2t + α3m · C(m, t, k1, k2, k3) · x2k1t

являются триномиальными квадратичными однородными подстановками
и APN- и AB-отображениями и имеют следующие характеристики:

degF degF−1 δF βF NlF
2 n+1

2 2 2 2n−1 − 2
n−1
2

Для дальнейшего исследования можно поставить следующие вопросы:
1. Когда для квадратичной подстановки F существуют такие a, b ∈ F∗2n, что

— δF (a, b) < δF и βF (a, b) = βF ;
— δF (a, b) = δF и βF (a, b) = βF?

2. При каких условиях на квадратичную подстановку F выполнено δF = βF
и δF 6= 2?
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В теории механизмов в настоящее время для описания строения механиз-
мов, как правило, используют граф G [1–3]. Его получают, сопоставляя зве-
ньям шарнирного механизма вершины графа G, а соединяющим звенья меж-
ду собой кинематическим парам— рёбра графа G. Однако, как было показано
в работе [4], описание строения механизма графом G не всегда адекватно и
удобно. Чтобы проанализировать этот вопрос, достаточно рассмотреть ка-
кую-либо определённую математическую модель механизмов.

Мы ограничимся рассмотрением модели плоских шарнирно-рычажных ме-
ханизмов [5, 6]. Под ними мы понимаем конструкции, составленные из пря-
молинейных жёстких стержней (рычагов), соединённых шарнирами в их кон-
цах. У нас каждый рычаг несёт по шарниру на своих концах. При этом если
в шарнире соединены лишь два рычага, то этому шарниру отвечает обычная
вращательная пара, допускающая произвольное проворачивание в плоскости
одного из рычагов относительно другого. Будем называть такой шарнир 1-
шарниром. Если в шарнире соединены k > 2 рычагов, то это так называемый
совмещённый или сложный шарнир с одним общим центром вращения для
всех k рычагов. Его мы назовём (k− 1)-шарниром. В этом шарнире каждый
из k рычагов допускает проворачивание, независимое от остальных рычагов.
Если же конец рычага не соединён ни с каким другим рычагом, то в нём
нет кинематической пары, и мы его называем 0-шарниром. До сих пор мы
говорили о незакреплённых конструкциях. В теории механизмов обычно рас-
сматривают закреплённые в плоскости (стойке) конструкции. Закрепление
будем производить шарнирами, которые назовём закреплёнными, и будем
обозначать крестиками— в отличие от кружочков, отвечающих свободным
(незакреплённым) шарнирам (рис. 1). В закреплённом шарнире непременно
имеется хотя бы одна кинематическая пара, и он не может быть 0-шарниром.

В этой модели естественно использовать граф G, вершины которого от-
вечают шарнирам, а рёбра — рычагам конструкции. Конфигурационное про-
странство механизма является компонентой связности положительной раз-
мерности множества решений системы уравнений, накладывающих условия
на расстояния между шарнирами и сразу выписывающихся по графу G:

(xi − xj)2 + (yi − yj)2 = dij,
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Рис. 1: Звенья механизма обозначены цифрами, стойка — цифрой 1. Граф G
конструкции с 2-шарниром не восстанавливается ни по одному из отвечаю-
щих ему трёх графов Ĝi, изображённых справа, взятому в отдельности.

где (xi, yi) —координаты i-го шарнира pi, а dij —квадрат длины рычага, несу-
щего на концах шарниры pi и pj. Число уравнений равно числу r рычагов, а
число неизвестных— удвоенному числу незакреплённых шарниров.

При наличии совмещённых шарниров по графу G невозможно восстановить
строение механизма. В некоторых источниках, например, в [2], предлагалось
в этом случае в качестве структурного графа использовать граф Ĝ, отлича-
ющийся от графа G при наличии совмещённого k-кратного (k > 1) шарнира
тем, что из G удалялось определённое число рёбер, входящих в отвечающий
этому совмещённому шарниру полный подграф Kk+1 ⊂ G. А именно, из пол-

ного графа Kk+1 удалялось
k(k − 1)

2
рёбер. Скажем, при наличии 2-шарнира

из подграфа K3 удалялось одно из рёбер (рис. 1). Такой структурный граф
Ĝ строится по конструкции неоднозначно, на рисунке 1 тремя способами. Да
и структуру механизма восстановить по нему невозможно.

Чтобы не терять информацию при наличии совмещённых шарниров, до-
статочно сопоставить конструкции взвешенный граф G∗. Взвешенный граф
G∗— это граф G, каждому отвечающему k-кратному шарниру (k > 0) ребру
которого приписан вес k, где k = 1, 2, . . . . Можно, изображая взвешенный
граф G∗, писать на его рёбрах вес k = 2, 3, . . . и не записывать вес, равный 1.
Тогда если механизм содержит лишь 1-шарниры, то его взвешенный граф G∗
совпадает с обычным графом G. Однако, как показано в работе [4], и в этом
случае удобнее пользоваться графом G.

Таким образом, использование графа G в модели плоских шарнирно-
рычажных механизмов предпочтительнее использования традиционных гра-
фов G и Ĝ. Для описания структуры в других моделях плоских механизмов с
вращательными парами целесообразно перейти к эквивалентному шарнирно-
рычажному механизму, и использовать его граф G [7].
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Пусть w = w[1]w[2] . . . w[n] —произвольное формальное слово дли-
ны n, обозначаемой через |w|. Фрагмент w[i]w[i + 1] . . . w[j] слова w, где
1 6 i 6 j 6 n, называется фактором слова w и обозначается через w[i..j].
Два фактора w[i′..j′] и w[i′′..j′′] такие, что i′ 6 i′′, будем называть смыкаю-
щимися, если i′′ 6 j′ + 1. Под пересечением данных факторов понимается
фактор w[i′′..j′] (если i′′ = j′ + 1, то пересечение данных факторов полага-
ется пустым). Если некоторое слово u совпадает с некоторым фактором v
слова w, то v называется вхождением слова u в w. Два фактора в слове по-
лагаются равными, если они являются вхождениями одного и того же слова.
Мы обозначаем через p(w) минимальный период слова w и через e(w) от-
ношение |w|/p(w), которое называется порядком слова w. Слово называется
периодическим, если его порядок не меньше, чем 2. Вхождения периодиче-
ских слов в некотором слове называются периодичностями в этом слове.
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Самым простым и наиболее известным примером периодичностей являются
факторы вида uu, где u—непустое слово. Такие факторы называются квад-
ратами. Под периодом квадрата uu понимается длина слова u. Квадраты в
словах являются классическим объектом исследований в словарной комби-
наторике [1] и используются в многочисленных комбинаторных алгоритмах
на словах [2]. Поэтому представляет большой интерес как с комбинаторной,
так и с алгоритмической точки зрения задача определения всех квадратов в
заданных словах специального вида.

Пусть r—некоторая периодичность. Любой фактор длины p(r) в r называ-
ется циклическим корнем периодичности r. Две периодичности с одинаковым
минимальным периодом называются периодичностями с одинаковыми кор-
нями, если они имеют одинаковые множества различных циклических кор-
ней.

Периодичность в некотором слове называется максимальной, если эта пе-
риодичность не может быть расширена в этом слове ни на один символ ни
вправо, ни влево с сохранением ее минимального периода. Более строго, пери-
одичность r ≡ w[i..j] в w называется максимальной, если она удовлетворяет
следующим условиям:
1. Если i > 1, то w[i− 1] 6= w[i− 1 + p(r)].
2. Если j < n, то w[j + 1− p(r)] 6= w[j + 1].
Множество всех максимальных периодичностей в слове является компакт-
ным представлением всех периодичностей в слове, имеющим много полезных
приложений (см., например, [3]). Для максимальных периодичностей с оди-
наковыми корнями имеют место следующие факты (см., например, [4]).

Утверждение 1. Длина пересечения двух смыкающихся максимальных пе-
риодичностей с одинаковыми корнями меньше минимального периода дан-
ных периодичностей.

Утверждение 2. Пусть r′, r′′— две смыкающиеся максимальные перио-
дичности с одинаковыми корнями и минимальным периодом p. Тогда су-
ществует целое σ такое, что 0 < σ < p и для любых равных циклических
корней w[i′..i′+p−1], w[i′′..i′′+p−1] периодичностей r′ и r′′ соответственно
выполняется i′′ − i′ ≡ σ (mod p).

Мы обозначаем число σ, удовлетворяющее утверждению 2, через σ(r′, r′′).
Заметим, что в максимальной периодичности r с минимальным периодом

p(r) любой фактор длины 2kp(r), где k ∈ N, являются квадратами с перио-
дом kp(r). Мы называем такие квадраты порожденными периодичностью r.
Очевидно, что все квадраты, порожденные любой максимальной периодич-
ностью, могут быть легко определены и описаны.
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Пусть для слова w найдутся i, j, где 1 6 i 6 j+1 6 n, такие, что факторы
w[1..j] и w[i..n] являются максимальными периодичностями с одинаковыми
корнями, т. е. w состоит из двух смыкающихся максимальных периодично-
стей с одинаковыми корнями. В таком случае мы будем говорить, что сло-
во w образовано смыкающимися периодичностями r′ = w[1..j] и r′′ = w[i..n] с
одинаковыми корнями. Положим p′ = p(r′) = p(r′′) и заметим, что в данном
слове w любой фактор w[s..s+2p−1] длины 2p, где p = σ(r′, r′′)+kp′ для неко-
торого k ∈ N, такой, что i 6 s+p 6 j+1, является квадратом. Мы называем
такие квадраты порожденными парой смыкающихся периодичностей r′, r′′.
Очевидно, что все квадраты, порожденные любой парой смыкающихся пери-
одичностей, могут быть легко определены и описаны. Основным результатом
данной работы является следующее утверждение.

Теорема 1. Пусть слово w образовано некоторыми смыкающимися пери-
одичностями r′ и r′′ с одинаковыми корнями, p(r′) = p(r′′) = p′. Тогда в
слове w любой квадрат с периодом не меньшим, чем p′, является либо квад-
ратом, порожденным периодичностями r′ или r′′, либо квадратом, порож-
денным парой смыкающихся периодичностей r′, r′′.

Таким образом, в теореме 1 получено полное описание всех квадратов с
относительно большим периодом в словах, образованных смыкающимися пе-
риодичностями с одинаковыми корнями.

Работа выполнена при финансовой поддержке Минобрнауки России в рам-
ках реализации программы Московского центра фундаментальной и при-
кладной математики по соглашению № 075-15-2022-284.
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Следуя работе [1], рассматриваем конфигурации как совокупности из v
подмножеств одинаковой мощности k < v в множестве мощности v, для ко-
торых матрица инциденций имеет специальный вид.

Определение 1. Матрицу L ∈ GL(v, 2) называем (v, k)-матрицей, если у
неё и у матрицы L−1 в каждой строке и каждом столбце k единиц и v− k
нулей.

Для любых подстановочных матриц P,Q ∈ GL(v, 2) матрица PLQ, по-
лучающаяся из L независимыми перестановками строк и столбцов, — тоже
(v, k)-матрица. Матрицы PLQ и L будем называть комбинаторно эквива-
лентными.

Сумму подмножеств A,B ⊆ X множества X мощности v определим ра-
венством A+B = (A ∪B) \ (A ∩B). Тогда множество 2X всех подмножеств
множества X с заданной на нём операцией сложения становится элементар-
ной абелевой группой, изоморфной группе GF (2)v по сложению. Иногда для
рассматриваемых конфигураций удобнее пользоваться эквивалентным опре-
делением.

Определение 2. Совокупность X ⊂ 2X из v подмножеств мощности k
множества X мощности v называем k-конфигурацией, если:
1) каждый элемент x ∈ X принадлежит ровно k подмножествам из X ;
2) каждый элемент x ∈ X (как одноэлементное подмножество {x}) явля-

ется суммой ровно k подмножеств из X , причём каждое подмножество
из X участвует в качестве слагаемого ровно в k суммах.

Предполагается, что соответствующий гиперграф является связным.
Матрицу инциденций для k-конфигурации X будем обозначать

LX = ||l(x,A)||x∈X,A∈X , l(x,A) = 1 ⇔ x ∈ A. k-конфигурацию с матрицей инци-
денций L будем обозначать XL.

Данная работа посвящена изучению инвариантов класса комбинаторной
эквивалентности 5-конфигураций.
Канонический набор представлений 5-матрицы. В работе автора [2]

для различения комбинаторно неэквивалентных 5-матриц используется по-
нятие канонического набора представлений 5-матрицы, введённое Ф.М. Ма-
лышевым. Для данного инварианта доказано утверждение [2].

Утверждение 1. (v, 5)-матрицы A, B комбинаторно эквивалентны тогда
и только тогда, когда их канонические наборы представлений совпадают.
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Данный результат показывает, что канонический набор представлений 5-
матрицы является инвариантом класса комбинаторной эквивалентности. Бо-
лее того, с помощью этого инварианта удалось различить все комбинаторно
неэквивалентные (v, 5)-матрицы при v 6 12. Однако при проверке комбина-
торной эквивалентности двух (v, 5)-матриц с помощью канонического набо-
ра представлений этих (v, 5)-матриц в худшем случае потребуется порядка
(v− 5)!v! операций перестановки строк и столбцов в (v, 5)-матрице. Поэтому
хотелось бы найти и другие инварианты, позволяющие более быстро разли-
чать комбинаторно неэквивалентные (v, 5)-матрицы.
Набор типов вершин 5-конфигурации. Рассмотрим ещё один инвари-

ант класса комбинаторной эквивалентности 5-конфигураций, предложенный
Ф.М. Малышевым.

Определение 3. Пусть вершина x ∈ X содержится в подмножествах
X1, X2, X3, X4, X5 (v, 5)-конфигурации X . Тогда типом вершины x ∈ X
будем называть следующий структурированный набор чисел, содержа-
щий всевозможные мощности пересечений четырёх, трёх, двух 5-подмно-
жеств, содержащих x:
typeX (x) = (|X1 ∩X2 ∩X3 ∩X4|, . . . , |X2 ∩X3 ∩X4 ∩X5|, |X1 ∩X2 ∩X3|, . . .

. . . , |X3 ∩X4 ∩X5|, |X1 ∩X2|, . . . , |X4 ∩X5|).
Считаем, что наборы, получающиеся при перенумерации подмножеств
X1, . . . , X5, эквивалентны.

Определение 4. Пусть X — (v, 5)-конфигурация на множестве X. Тогда
мультимножество type(X ) = {typeX (x)|x ∈ X}, составленное из всех ти-
пов вершин (v, 5)-конфигурации X , будем называть набором типов вершин
(v, 5)-конфигурации X .
Утверждение 2. Набор типов вершин является инвариантом для всего
класса комбинаторной эквивалентности с представителем X .

С помощью компьютерных вычислений был получен следующий результат.

Утверждение 3. При v 6 11 наборы типов вершин однозначно определяют
(v, 5)-конфигурации. При v = 12 имеется 8 пар и одна тройка комбинатор-
но неэквивалентных (v, 5)-конфигураций, обладающих одинаковым набором
типов вершин.

Перманент 5-матрицы. В заключение работы рассмотрим такую харак-
теристику 5-матриц, как перманент (см., например, [3]).

По определению 1 5-матрица является обратимой матрицей над полем
GF (2), поэтому её перманент равен единице. Также 5-матрица является мат-
рицей инциденций соответствующей 5-конфигурации, поэтому её можно рас-
сматривать как (0,1)-матрицу над кольцом целых чисел. И тогда такая ха-
рактеристика, как перманент 5-матрицы, становится более содержательной.
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Далее в этом разделе 5-матрицу L рассматриваем как (0, 1)-матрицу над
кольцом целых чисел. И под записью Per(L) понимаем перманент 5-матри-
цы L.

Важным для нас свойством перманента матрицы является то, что при
перестановке строк и столбцов матрицы он не изменяется. Следовательно,
перманент является инвариантом класса комбинаторной эквивалентности 5-
матриц. Однако для квадратной матрицы L также верно Per(L) = Per(LT ).
Значит, с помощью данной характеристики мы не можем различить такие
матрицы. Но так как мы знаем, каким преобразованием могут отличаться 5-
матрицы с одинаковым перманентом, то мы не потеряем комбинаторно неэк-
вивалентные.

Отметим, что с помощью формулы Райзера (см., например, [4]) и обхо-
да n-мерного двоичного куба по гамильтонову циклу перманент квадратной
матрицы порядка n вычисляется за порядка n2n операций сложения и умно-
жения в рассматриваемом коммутативном кольце.

При вычислении перманентов для (10, 5)-матриц оказалось, что имеется 13
пар (10, 5)-матриц L,L′, для которых выполнено Per(L) = Per(L′), но L,L′
комбинаторно неэквивалентны и L′ 6= LT . Таким образом, данный инвариант
класса комбинаторной эквивалентности плохо различает (v, 5)-конфигурации
даже при малых значениях v.

Далее с 5-матрицей L свяжем матрицу L(x) над кольцом Z[x], где L(x)
получена из L заменой «0» на «x». Рассмотрение такой характеристики обу-
словлено тем, что она будет давать больше информации, чем Per(L). Для
комбинаторно неэквивалентных (v, 5)-матриц при v = 10, 11, 12 получили
следующие результаты.

Утверждение 4. Для v = 10, 11 имеется всего по 2 пары, а для
v = 12 — всего 85 пар (v, 5)-матриц L,L′, для которых выполнено
Per(L(x)) = Per(L′(x)), но L,L′ комбинаторно неэквивалентны и L′ 6= LT .

Автор выражает благодарность Ф.М. Малышеву за постановку задач.
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Рассматривается задача о существовании сюръективного гомоморфизма
на рефлексивные циклы различной длины. Рассмотрим граф G = (V,E) с
множеством вершин V и множеством ребер E ⊆ V ×V и граф H = (V ′, E ′) с
вершинами V ′ и ребрамиE ′ ⊆ V ′×V ′. Гомоморфизм графаH на граф G — это
отображение f : V ′ → V такое, что ∀(ai, aj) ∈ E ′ верно, что (f(ai), f(aj)) ∈ E.
Для фиксированного графа H задача о существовании сюръективного гомо-
морфизма Surj-Hom(H) — это массовая задача, в которой по данному графу G
требуется проверить, существует ли сюръективный гомоморфизм из G на H.

Петлёй в графе G = (V,E) называется ребро вида (v, v), где v ∈ V . Граф
называется рефлексивным, если для каждой v ∈ V верно (v, v) ∈ E. На-
зовем граф неориентированным, если для каждого ребра вида (v, w) верно
(w, v) ∈ E. Назовем граф строго ориентированным, если для каждого ребра
вида (v, w), v 6= w, верно (w, v) /∈ E. Циклом длины n, n > 3, будем называть
граф с вершинами V = {0, 1, . . . , n− 1}, в котором для каждого v ∈ V верно
(v, v + 1 (mod n)) ∈ E или (v + 1 (mod n), v) ∈ E.

Задача о существовании сюръективного гомоморфизма была сформулиро-
вана ещё в прошлом веке [1], но до сих пор не является полностью решённой.
Известно, что задача либо лежит в P, либо является NP-трудной [2, 3]. Пред-
принималось множество способов связать сложность Surj-Hom(G) с различ-
ными свойствами графа G. Так, известна сложность задачи в случае, если
G — звезда (то есть граф с ровно одной вершиной, смежной всем остальным
вершинам) без петель или полный двудольный граф без петель [4], связный
граф с ровно двумя петлями [5], цикл длины 6 без петель [6]. Для строго ори-
ентированных циклов сложность задачи известна только для n 6 3 [7]. Так,
известен граф C3, для которого задача решается за полиномиальное время.

Рис. 1: Граф C3.
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Для неориентированных циклов сложность задачи известна для n < 5 [8].
Ключевым результатом является доказательство сложности задачи для

всех строго ориентированных рефлексивных циклов, неориентированных ре-
флексивных циклов длины n > 6 [9].

Теорема 1. Пусть C — строго ориентированный цикл, содержащий n вер-
шин, n > 3. Если C совпадает с C3, то Surj-Hom(C) лежит в P. Иначе
Surj-Hom(C) является NP-трудной.

Теорема 2. Пусть C —неориентированный цикл, содержащий n вершин,
n > 6. Тогда Surj-Hom(C) является NP-трудной.

Для доказательства этих теорем используются полиморфизмы циклов —
функции, сохраняющие их отношение смежности.

Функция f местности k называется полиморфизмом m-местного отно-
шения R, если для любых (a1

1, . . . , a
m
1 ), . . . , (a1

k, . . . , a
m
k ) из R верно, что

(f(a1
1, . . . , a

1
k), . . . , f(am1 , . . . , a

m
k )) тоже из R. Функция f от n переменных на-

зывается существенно-унарной, если она существенно зависит не более чем
от одной переменной. Будем отождествлять граф и отношение смежности на
его вершинах.

Теорема 3. Пусть C —неориентировнный цикл, содержащий n вершин,
n > 3, и f — сюръективный полиморфизм C. Тогда f существенно унарна.

Теорема 4. Пусть C — строго ориентированный цикл, содержащий n вер-
шин, n > 3, и f — сюръективный полиморфизм C. Тогда f существенно
унарна.
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Введение

В данной работе исследуется задача open shop с маршрутизацией, являю-
щаяся обобщением задачи open shop и метрической задачи коммивояжёра,
которая может быть описана следующим образом. Задано множество работ
J = {J1, . . . , Jn} и множество машин M = {M1,M2}, каждая машина Mi

выполняет операции каждой работы Jj с заданной длительностью pji в про-
извольном порядке. Работы расположены в вершинах транспортной сети, за-
данной реберно-взевешенным графом G = 〈V ;E〉.

Вес ребра соответствует времени перемещения машин из одной вершины
в другую. Машины изначально находятся в выделенном узле, называемом
базой, и должны вернуться в него после выполнения всех операций. Машина
может выполнять операции только тех работ, которые расположены в том
же узле, где в данное время находится машина. Длиной расписания Rmax в
этой задаче является момент возвращения последней машины на базу после
выполнения всех операций. Требуется составить расписание выполнения всех
операций и перемещения машин с минимальным значением Rmax. Задача с m
машинами обозначается ROm||Rmax, а также ROm|G = X|Rmax, если хотим
уточнить структуру транспортной сети. Задача с независимыми временами
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перемещения машин, когда расстояния между вершинами для каждой маши-
ны индивидуальны, обозначается ROm|Rtt|Rmax.

Задача ROm||Rmax была впервые сформулирована в статьях [1, 2]. В ра-
боте [1] доказано, что задача RO2|G = K2|Rmax является NP-трудной. Для
этой постановки в [3] описан FPTAS.

Одним из частных случаев является соразмерная задача open shop с марш-
рутизацией: в этой постановке длительности операций одной работы совпада-
ют, а задача обозначается ROm|j-prpt|Rmax. В статье [4] показано, что задача
остаётся NP-трудной даже в соразмерном случае RO2|G = K2, j-prpt|Rmax.

В [2] была введена стандартная нижняя оценка длины расписания для
задачи ROm||Rmax:

R∗max > R̄ = max

{
`max + T ∗,max

v∈V
(dmax(v) + 2dist(v0, v))

}
.

Здесь `max = max
i

n∑
j=1

pji означает максимальную нагрузку машины,

dmax(v) —максимальная длина работы в вершине v, T ∗— оптимум задачи
коммивояжёра, а dist(u, v) время перемещения между вершинами u и v.

Результаты

Основным объектом исследования в данной работе является соразмерная за-
дача open shop с маршрутизацией (ROm|j-prpt|Rmax).

Одним из направлений исследования этой задачи является поиск интерва-
ла локализации оптимумов, который заключается в следующем: найти мини-
мальное значение параметра ρ такое, что ∀I выполняется R∗max(I) ∈ [R̄, ρR̄],
а также в описании примера, на котором оценка достигается.

Наш подход к нахождению таких интервалов базируется на двух процеду-
рах упрощения примера, сохраняющих стандартную нижнюю оценку: скле-
ивание работ (замена подмножества работ одной) и стягивание висячих вер-
шин (перемещение работы из висячей вершины в смежную ей). Использо-
вание процедуры упрощения исходного примера позволяет сократить коли-
чество работ в примере, а также упростить структуру транспортной сети с
сохранением стандартной нижней оценки.

Данный подход для соразмерной задачи open shop с двумя машинами
(RO2|j-prpt|Rmax) использовался для нахождения интервалов локализации
оптимумов для транспортной сети с двумя и тремя вершинами [4] и дере-
ва [5] в случае идентичных времен перемещения. Во всех этих случаях ин-
тервал локализации оптимумов равен [R̄, 7

6R̄].
В [5] также рассматривалась задача с независимыми временами переме-

щения (ROm|Rtt, j-prpt|Rmax): было доказано, что для случая с двумя вер-
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шинами интервалы локализации оптимумов для задачи с идентичными вре-
менами перемещения и независимыми временами перемещения совпадают.
Основным результатом данной работы является обобщение этого результата
для некоторых частных случаев соразмерной задачи open shop с независи-
мыми временами перемещения на дереве.

Также была рассмотрена соразмерная задача с m машинами и произволь-
ной транспортной сетью ROm|j-prpt|Rmax. Для этой задачи была доказана
следующая теорема.

Теорема 1. Пусть I —пример задачи ROm|j-prpt|Rmax. Тогда за время,
линейное от числа работ, можно построить расписание S, длина которого
принадлежит интервалу [R̄, 5

2R̄].

Доказательство использует результат для задачи Fm|prpt|Cmax, представ-
ленный в [6], о том, что любое перестановочное расписание для задачи
Fm|prpt|Cmax является оптимальным.

Исследование выполнено за счет гранта Российского научного фонда №22-
71-10015, https://rscf.ru/project/22-71-10015/.
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Обозначим через Fn2 пространство двоичных векторов с n координатами.
Обобщённой булевой функцией от n переменных называется произвольное
отображение из пространства Fn2 в кольцо Zq (см. [1]). В случае q = 2 функ-
ция называется булевой функцией. Каждая обобщённая булева функция от n
переменных единственным образом представима в виде многочлена Жегал-
кина (алгебраической нормальной формы, АНФ) над кольцом Zq:

f (x1, x2, . . . , xn) = a0 +
n∑
k=1

∑
16i1<i2<...<ik6n

ai1i2...ikxi1xi2 . . . xik,

где az ∈ Zq для всех z. Алгебраической степенью функции f называется
максимальная из степеней одночленов, входящих в её многочлен Жегалкина
с ненулевыми коэффициентами.

Весом Ли элемента x ∈ Zq называется число wtL(x) = min {x, q − x}. Ве-
сом Ли обобщённой булевой функции от n переменных называется сумма
весов Ли всех её значений:

wtL(f) =
∑
x∈Fn2

wtL(f(x)).

Расстояние Ли distL(f, g) между обобщёнными булевыми функциями f, g от
n переменных есть число wtL(f − g). Заметим, что в булевом случае q = 2
вес, а также расстояние Ли совпадают с весом и, соответственно, расстоянием
Хэмминга.

Пусть ω = e2πi/q —примитивный корень из 1. Для x, y ∈ Fn2 через 〈x, y〉
обозначим выражение

n⊕
i=1

xiyi, где знак ⊕ есть операция сложения по мо-

дулю 2. Преобразованием Уолша—Адамара обобщённой булевой функции f
от n переменных называется комплекснозначная функция

Hf(y) =
∑
x∈Fn2

ωf(x)(−1)〈x,y〉, y ∈ Fn2 .

Особое внимание уделяется классу (обобщённых) булевых функций, обла-
дающих равномерным спектром Уолша—Адамара. Такие функции называ-
ются (обобщёнными) бент-функциями, они нашли ряд приложений в крип-
тографии, обработке сигналов, а также теории кодирования.
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Определение 1. Обобщённая булева функция f от n переменных называ-
ется обобщённой бент-функций, если

|Hf(y)| = 2n/2

для всех y ∈ Fn2 .

Свойствам и конструкциям обобщённых бент-функций посвящён ряд ра-
бот, в частности, [2–5].

Если существует булева функция f̃ от n переменных такая,
что Hf(y) = ωf̃(y)2n/2 для всех y ∈ Fn2 , то f называется регулярной,
а f̃ — её дуальной. Отметим, что дуальная функция f̃ также является
обобщённой бент-функцией. Известно, что при q = 2k, k > 2, все обобщённые
бент-функции являются регулярными, как для чётного, так и для нечёт-
ного n, за исключением единственного случая, когда k = 2, а n—нечётное
число [4].

Многочлены Жегалкина вида

f (x1, x2, . . . , xn) =
n∑
j=1

λjxj + λ0, x ∈ Fn2 , (1)

где λ0, λ1, λ2, . . . , λn ∈ Zq, задают множество обобщённых булевых функций
степени 1 от n переменных. Векторы значений данных функций образуют
обобщённый код Рида—Маллера RMq(r, n) [1]. Хорошо известно, что буле-
ва бент-функция не может иметь степень 1, а также не может зависеть от
нечётного числа переменных, но в случае с обобщёнными бент-функциями
ситуация меняется, — в работе [5] были приведены достаточные условия то-
го, что при q ≡ 0 (mod 4) обобщённая булева функция вида (1) является
обобщённой бент-функцией, а также представлены примеры таких функций.
Следующий результат обобщает известные данные.

Теорема 1. Обобщённая булева функция вида (1) является обобщённой
бент-функцией тогда и только тогда, когда q ≡ 0 (mod 4) и λj ∈

{
q
4 ,

3q
4

}
для всех j = 1, 2, . . . , n. При этом она является регулярной, если и только
если выполнено по крайней мере одно из условий:
1) число n—чётное;
2) q ≡ 0 (mod 8).
Её дуальная в этом случае имеет вид

f̃(x) =
n∑
j=1

(q − λj)xj +

(
λ0 +

3q

4
n+

3

2

n∑
k=1

λk

)
.

Отображение называется изометричным, если оно сохраняет расстояние
между каждой парой функций. С обобщёнными бент-функциями связан ряд



78 Куценко А.В.

открытых вопросов, одним из них является описание изометричных отоб-
ражений, оставляющих множество обобщённых бент-функций от n перемен-
ных на месте. Данный вопрос тесно связан с задачей исследования группы
автоморфизмов данного класса функций, что подразумевает изучение его
структурных и метрических свойств. Стоит отметить, что в данном случае
дополнительно ставятся вопросы выбора метрики и исследования группы ав-
томорфизмов в различных метриках.

Отображение f → f̃ , определённое на множестве регулярных обобщённых
бент-функций от n переменных и ставящее в соответствие каждой регуляр-
ной обобщённой бент-функции от n переменных дуальную к ней функцию,
называется отображением дуальности. Известно, что для q = 2 отобра-
жение дуальности является единственным известным отоображением, дей-
ствующим на множестве бент-функций от n переменных изометрично и не
являющимся элементом группы автоморфизмов множества бент-функций от
n переменных. При этом неизвестно, обладает ли данное отображение таким
свойством по отношению к обобщённым бент-функциям. В настоящей работе
доказана следующая

Теорема 2. На множестве регулярных обобщённых бент-функций степе-
ни 1 отображение дуальности является изометрией относительно мет-
рики Ли.

Открытым остаётся вопрос, является ли отображение дуальности изомет-
ричным на множестве обобщённых бент-функций большей степени. Данный
вопрос также можно рассматривать по отношению к известным классам обоб-
щённых бент-функций относительно различных метрик.
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Введение

Модель клеточных схем (КС) впервые была предложена в 1967 году
С.С. Кравцовым в работе [1], в которой для неё был получен порядок функ-
цииШеннона. ФункцияШеннона характеризует сложность самой «сложной»
функции алгебры логики (ФАЛ) от n переменных. Модель КС является ма-
тематической моделью интегральных схем (ИС), учитывающей особенности
физического синтеза. Наличие требований на геометрию схемы, обеспечива-
ющих учёт необходимых трассировочных ресурсов при создании ИС, пред-
ставляет собой принципиальное отличие от хорошо изученных классов схем
из функциональных элементов (СФЭ).

Аналогичная математическая модель в зарубежных источниках была опи-
сана в 1980 году К.Д. Томпсоном в работе [2]. Дальнейшие продвижения в
работах [3, 4] показали асимптотические оценки высокой степени точности
(АОВСТ) для функции Шеннона клеточных схем, реализующих отдельные
классы функций.

В работе [3] были установлены асимптотически точные верхние и нижние
оценки для площади схем над базисом Б′0 (см. рис. 1 и ср. с [1]), реализующих
дешифратор порядка n, которые имеют вид n2n−1(1±O( 1

n)).
В работе [4] были установлены верхние и нижние АОВСТ для сложности

AБ′0(
~P2n(n)), то есть для площади универсального многополюсника порядка

n в модели клеточных схем над базисом Б′0, имеющие вид

n · 22n−1 −O(n2) 6 AБ′0(
~P2(n)) 6 (n+ 6)22n−1 +

3n

2n
22n−1. (1)

В настоящей работе аналогичные АОВСТ получаются для системы всех
самодвойственных функций.

Основные результаты

Утверждение 1. Для площади клеточной схемы из функциональных и
коммутационных элементов Σn над базисом Б′0, реализующей систему всех
самодвойственных функций S(n), верна верхняя оценка

A(Σn) 6 22n−1−1(n+ 8) +O(22n−1).
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Рис. 1: Базис Б′0: функциональные элементы —конъюнкция (&), дизъюнкция
(∨) и отрицание (¬); коммутационные элементы (слева направо) — провод-
ник, T-образный разветвитель, разветвитель, пересечение без соединения, по-
ворот, изолятор.

Утверждение 2. Для площади системы всех самодвойственных функций
S(n) верна нижняя оценка:

AБ′0(S(n)) > 22n−1−1n−O(22n−1).

Таким образом, основным результатом работы является следующая теоре-
ма

Теорема. Для системы всех самодвойственных функций S(n) выполняется
равенство

AБ′0(S(n)) = 22n−1−1(n±O(1)).
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В данной работе рассматривается задача индивидуального синтеза, а имен-
но синтеза обобщенных контактных схем (КС), реализующих линейную
функцию алгебры логики (ФАЛ). В ней изучается класс обобщенных КС
ранга не более r, то есть класс КС в базисе, состоящем из контактов, реа-
лизующих все различные ФАЛ от r булевых переменных (БП). Исследуется
сложность реализации линейной ФАЛ в данном классе схем, а также в неко-
торых его подклассах.

Ранее было установлено, что сложность линейной ФАЛ от n БП в классе
контактных схем в стандартном базисе (базисе, содержащем замыкающий и
размыкающий контакты) равна 4n− 4. При этом верхняя оценка указанного
вида получается с помощью метода каскадов (см., например, [1]), а нижняя
была доказана в [2] (более простое доказательство, предложенное С.А. Лож-
киным, см., например, в [3]).

ПустьB = {0, 1}, аBn = B ×B × · · · ×B︸ ︷︷ ︸
n

— его n-я декартова степень или,

иначе, единичный n-мерный куб, то есть множество наборов α = (α1, . . . , αn),
где αi ∈ B при всех i, i ∈ [1, n].

Пусть X —множество, элементами которого являются БП, а |X|— его
мощность, то есть число БП, которые в нём содержатся. Множество БП
{x1, x2, . . . , xn} будем обозначать через X(n), а множество всех ФАЛ от БП
из X(n) —через P2(n).

Набор α = (α1, . . . , αn) ∈ Bn будем называть четным, если в нем со-
держится четное число единиц, то есть число αi, таких, что αi = 1, является
четным, i = 1, . . . , n. В противном случае набор α будем называть нечетным.
Через Bn

чет обозначим множество всех четных наборов от n БП. Функция lr
(соответственно ln) называется линейной нечетной (линейной четной) ФАЛ
ранга r, если она существенно зависит от r БП и принимает значение 1 толь-
ко на всех нечетных (четных) наборах. Контакт, управляемый такой ФАЛ,
называется линейным нечетным (линейным четным) контактом ранга r.

В работе рассматривается специальный подкласс UKl
r класса обобщенных

КС, включающий в себя все контактные схемы, которые состоят только из
линейных контактов ранга r. Заметим, что класс UKl

r является полным при
любом r, r > 1, то есть в нем можно реализовать любую ФАЛ.
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Сложностью L(Σ) контактной схемы Σ будем, как обычно, называть
число её контактов, а сложностью LKlr (f) ФАЛ f в классе КС UKl

r —мини-
мальную сложность КС из UKl

r , реализующую данную ФАЛ f .
Функцию f из P2(n) будем называть α-сферической, где α ∈ Bn , если для

любых наборов β и γ из Bn, отличающихся от α ровно в одном и ровно в
двух разрядах соответственно, f(β) = 0 и f(γ) = 1. При этом 0̃-сферическую
ФАЛ будем называть просто сферической.

В данной работе исследована сложность реализации линейной ФАЛ ln в
классе UKl

r . Получены точная верхняя и асимптотически точная нижняя
оценки сложности линейной ФАЛ ln в данном классе.

Рис. 1: Схема Кардо

Для получения верхней оценки сложности используется структура так на-
зываемой схемы Кардо (см., например, [1]). Разбив множество всех БП X(n)
на dnr e непересекающихся подмножеств X1, X2, . . . , Xdnr e, мощность каждого
из которых, кроме, быть может, одного, равна r, можно построить схему ти-
па схемы Кардо (см. рис. 1), контактами которой управляют линейные ФАЛ
lr(Xi), lr(Xi) от полученных множеств БП Xi, где i = 1, 2, . . . , dnr e. Таким
образом может быть установлена следующая верхняя оценка исследуемой
сложности:

LKlr (ln) 6 4
⌈n
r

⌉
− 4.

Для получения нижней оценки данной сложности сначала исследуется
сложность сферической ФАЛ в классе UKl

r . Было доказано, что если КС Σ,
Σ ∈ UKl

r , реализует сферическую ФАЛ f из P2(n) и L(Σ) 6 4dnr e, то в КС
Σ содержится не менее 2dnr e − c0

√
n
r нечетных контактов, где c0 —некоторая

константа, зависящая от r и не зависящая от n. Так как ФАЛ ln является
α-сферической для любого набора α ∈ Bn

нечет, то далее для доказательства
нижней оценки сложности линейной ФАЛ ln в классе UKl

r , следуя [4], исполь-
зуется средняя проводимость КС. В результате получена следующая оценка:

LKlr (ln) > 4
⌈n
r

⌉
− 2c0

√
n

r
.
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Из предыдущей оценки следует асимптотически точная нижняя оценка
исследуемой сложности∗:

LKlr (ln) & 4
⌈n
r

⌉
.

В итоге получена следующая асимптотически точная оценка сложности
линейной ФАЛ ln в классе UKl

r :

LKlr (ln) ∼ 4
⌈n
r

⌉
.

Список литературы
[1] Ложкин С.А. Лекции по основам кибернетики. М. : Издательский отдел

ф-та ВМиК МГУ, 2004.
[2] Cardot C. Quelques résultats sur l’application de l’algèbre de Boole a la syn-

thèse des circuits a relais // Annales Des Télécommunications. 1952. Vol. 7,
no. 2. P. 75–84.

[3] Яблонский С.В. Элементы математической кибернетики. М. : Высшая
школа, 2007.

[4] Ложкин С.А., Кошкин Н.А. О сложности реализации некоторых систем
функций алгебры логики контактными многополюсниками // Доклады
Академии наук СССР. 1988. Т. 298, №4. С. 807–811.
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Из задачи организации взаимодействия и моделирования вычислений воз-
никает задача оптимального вложения деревьев в прямоугольные решетки
(ПР), т. е. графы, вершинами которых являются точки плоскости с коорди-
натами (x, y), где x и y—целые числа такие, что x ∈ [a, a+ λ), y ∈ [b, b+ h)
для заданных целых a, b и натуральных h, λ. При этом ребра соединянют все
пары точек (x1, y1) и (x2, y2) таких, что |x1 − x2|+ |y1 − y2| = 1. В узлах ПР
можно размещать вычислительные узлы, а по ребрам проводить соединяю-
щие их проводники. Вложения могут быть описаны отображениями вершин

∗Используются следующие обозначения асимптотических неравенств и равенств:
a(n) & b(n), если a(n) > b(n)(1 + ε(n));
a(n) ∼ b(n), если a(n) = b(n)(1 + ε(n)),
для некоторой последовательности ε(n)→ 0 при n→∞.
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дерева в узлы ПР, а ребер — в цепи решетки. Задача оптимизации вложения
сводится к нахождению при определенных условиях минимальной высоты h,
длины λ, λ > h, и площади h · λ допускающей его ПР.

Следуя [1], для графа G через V (G), X(G) и C(G) будем обозначать мно-
жество его вершин, ребер и простых цепей соответсвенно, а сам граф G бу-
дем записывать в виде G = (V (G), X(G)). Будем говорить, что упорядо-
ченная пара отображений (φ, ψ) определяет вложение графа G в граф F ,
если φ : V (G) → V (F ), ψ : X(G) → C(F ) и для любого ребра x = (u, v),
x ∈ X(G), цепь φ(x) соединяет вершины φ(u) и φ(v). Вершины графа F ,
которые являются образами вершин графа G, бутем называть основными
вершинами вложения, цепи графа F , которые соответствуют ребрам графа
G, — его транзитными цепями, внутренние вершины и ребра транзитных це-
пей — транзитными вершинами и ребрами.

Пусть B4 —множество всех ненулевых двоичных наборов длины 4 с обыч-
ным отношением частичного порядка 6, которое имеет место, если анало-
гичное неравенство выполняется в каждом разряде, а B̂ = B4 ∪ {∗}, при-
чем для всех δ, δ ∈ B4, справедливо δ < ∗. Будем предполагать, что сто-
роны граничного прямоугольника решетки A пронумерованы числами от
1 до 4, считая от левой вертикальной стороны по часовой стрелке. Пусть
δ(A) = (δ1δ2δ3δ4) ∈ B4, где δi = 1 тогда и только тогда, когда полюса (листья
дерева) могут располагаться на границе решетки и на её стороне с номером
i, и пусть δ(A) = ∗, если полюса могут располагаться в решетке A про-
извольным образом. Решетку A будем при этом называть δ-решеткой, где
δ = δ(A). Если через каждую транзитную вершину проходит не более ν,
ν = 1, 2, различных транзитных цепей, то соответствующее вложение назы-
вается ν-вложением. Для дерева D обозначим через k(D) число его ярусов, а
через Hδ

ν(D) и Sδν(D) (δ ∈ B̂, ν ∈ {1, 2}) — минимальное значение наименьше-
го линейного размера (высоты) и числа вершин решетки A соответственно,
где минимум берется по всем δ-решеткам A, в которые возможно ν-вложение
дерева D. Очевидно, что величины Hδ

ν(D) и Sδν(D) монотонно не возрастают
по ν, ν = 1, 2, и δ, δ ∈ B̂, а также не изменяются при перестановке координат
одной четности в наборе δ, δ ∈ B4.

Теорема 1 ([1]). Для любого d-ичного, d ∈ {2, 3}, дерева Dd(k), k = 1, 2, . . . ,
и всех ν ∈ {1, 2}, δ ∈ B̂, выполняется равенство

Hδ
ν(Dd(k)) =

⌈
k + 1

4− d

⌉
. (1)

Задача об оптимизации площади ПР при дополнительном ограничении на
расположение листьев на границе решетки была рассмотрена в [1, 2]. Там для
оптимальной площади 1-вложения полного k-ярусного d-ичного, где d = 2, 3,
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дерева была получена асимптотически точная при k = 1, 2, . . . оценка по-
рядка kdk, в то время как высота построенного вложения не больше чем на
константу отличалась от минимально возможного значения высоты ПР, до-
пускающей указанное вложение, равного dk+1

4−de.

Теорема 2 ([1]). При всех d ∈ {2, 3}, δ ∈ B4, ν ∈ {1, 2} и k = 1, 2, . . . имеет
место соотношение

Sδν(Dd(k)) =

(
1

s(δ)
+ o(1)

)
dkH(d, k), (2)

где δ 6= ∗ и s(δ) = s(δ1, δ2, δ3, δ4) = max{δ1 + δ3, δ2 + δ4} 6 ν.

Теорема 3 (следует из [1, 3]). Для случая δ 6= ∗ и s(δ) = 2 при k = 1, 2, . . .
имеет место соотношение

Sδ1(D2(k)) =
k

3
· 2k · (1 + o(1)). (3)

В данной работе продолжаются исследования [1–3] и рассматривается за-
дача оптимальных по высоте (длине, т. е. «второму» линейному размеру ре-
шетки) двусторонних вложений полных двоичных и троичных k-ярусных де-
ревьев в ПР минимальной длины (высоты) и связь между высотой и дли-
ной решетки в указанных выше условиях. Эта связь исследуется на уровне
т. н. асимптотических оценок высокой степени точности, когда поведение этих
параметров при k = 1, 2, . . . устанавливается с точностью до слагаемого ви-
да O(1).

Теорема 4. Для любого полного двоичного дерева D2(k), k = 1, 2, . . . , и
δ = (0101), ν = 2 существует 2-вложение этого дерева в δ-решетку высо-
ты h и длины λ, где

h 6

⌊
k

2

⌋
+ 4, λ = 2k−1. (4)

Теорема 4 получена индукцией по k = 2, 3, . . . . На рис. 1 показаны иско-
мые вложения полных двоичных деревьев в ПР, когда k равно 2, 3, 4 и 5
соответственно.

Рис. 1: Вложения двоичных деревьев.
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Теорема 5. Для любого полного троичного дерева D3(k), k = 1, 2, . . . , и
δ = (0101), ν = 2 существует 2-вложение этого дерева в δ-решетку высо-
ты h и длины λ, где

h 6 k + 3, λ =

⌈
3k

2

⌉
. (5)

Теорема 5 получена индукцией по k = 3, 4, . . . . На рис. 2 показано искомое
вложение полного троичного 3-ярусного дерева в ПР.

Рис. 2: Вложение троичного дерева.

Список литературы
[1] Ложкин С.А., ЛиДаМин. О некоторых оптимальных вложениях двоич-

ных и троичных деревьев в плоские прямоугольные решетки // Вестник
Московского университета. Серия 15. Вычислительная математика и ки-
бернетика. 1995. №4. С. 49–55.

[2] ЛиДаМин. Некоторые оптимальные вложения древовидных графов в
плоские прямоугольные решетки : специальность 01.01.09 «Дискретная
математика и математическая кибернетика» : диссертация на соискание
ученой степени кандидата физико-математических наук ; МГУ имени
М.В. Ломоносова. Москва, 1994.

[3] Высоцкий Л.И., Ложкин С.А. Оптимальные двусторонние вложения пол-
ных двоичных деревьев в прямоугольные решетки // Прикладная мате-
матика и информатика : Труды факультета ВМК МГУ имени М.В. Ло-
моносова. М. : МАКС Пресс, 2018. Т. 59. С. 25–39.

О сложности задачи о вершинной 3-
раскраске для некоторых пар 6-вершинных

порожденных запретов
Малышев Дмитрий Сергеевич

Национальный исследовательский университет «Высшая школа экономики»;
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В настоящей работе рассматриваются только обыкновенные графы —
неориентированные графы без петель и кратных ребер. Наследственный
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класс графов —множество графов, замкнутое относительно удаления вершин.
Каждый наследственный класс графов X задается множеством своих запре-
щенных порожденных подграфов Y , при этом принята запись X = Free(Y).
Например, класс лесов задается запрещением всех порожденных циклов, а
класс двудольных графов задается запрещением всех порожденных нечет-
ных циклов.

Любое отображение, назначающее каждой вершине графа G элемент мно-
жества {1, 2, . . . , k} так, что любым соседним вершинам назначаются различ-
ные цвета, называется вершинной k-раскраской графа G. Задача о вершинной
k-раскраске (кратко, задача k-ВР) состоит в том, чтобы для заданного гра-
фа проверить, допускает ли он вершинную k-раскраску или нет. При любом
k > 2 задача k-ВР является классической NP-полной задачей на графах [1].

Для некоторых k сложностной статус задачи k-ВР остается открытым да-
же при запрещении небольших порожденных фрагментов. Так, сложность
задачи k-ВР открыта для класса Free({P8}) и k = 3, а также для класса
Free({P7}) и k = 4, где через Pn обозначен простой путь на n вершинах.
Вместе с тем, относительно семейств наследственных классов, определяемых
порожденными запрещенными подграфами, известен ряд следующих резуль-
татов об алгоритмической сложности задачи k-ВР:

— установлена (см. работу [2]) алгоритмическая сложность задачи 3-ВР для
всех классов вида Free({H}), где |V (H)| 6 6;

— установлена (см. работу [3]) алгоритмическая сложность задачи 4-ВР для
всех классов вида Free({H}), где |V (H)| 6 5;

— для каждого k задача k-ВР разрешима за полиномиальное время в классе
Free({P5}) [4];

— задача 3-ВР полиномиально разрешима в классе Free({P7}) [5];
— задача 4-ВР полиномиально разрешима в классе Free({P6}) [6];
— установлена (см. работу [7]) алгоритмическая сложность задачи 3-ВР для

всех классов вида Free({H}), где |V (H)| 6 7;
— задача 4-ВР является NP-полной в классе Free({P7}), но для каждого
k > 5 задача k-ВР является NP-полной в классе Free({P6}) [8];

— для любого множества запрещенных порожденных подграфов, каждый не
более чем с 5 вершинами, получена алгоритмическая сложность задачи 3-
ВР на соответствующем наследственном классе графов [9–12].

В данной работе рассматривается задача 3-ВР для пар (H1, H2), состо-
ящих из 6-вершинных запрещенных порожденных подграфов. Задача 3-ВР
будет NP-полной (см., например, работу [9]), если класс X = Free({H1, H2})
включает один из двух классов: X1 —класс лесов, а X2 —класс реберных гра-
фов лесов со степенями всех вершин не более чем 3. По-видимому, этих двух
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классов достаточно для полной классификации алгоритмической сложности
задачи 3-ВР для пар 6-вершинных запрещенных порожденных фрагментов:

Предположение. Пусть X = Free({H1, H2}), где H1 и H2 содержат не
более 6 вершин каждый. Тогда задача 3-ВР является NP-полной в классе X ,
если X1 ⊆ X или X2 ⊆ X , а иначе она является полиномиально разрешимой
в классе X .

В этой работе мы частично подтверждаем это предположение. Соглас-
но [7, 9] можно считать, что H1 ∈ X1, причем H1 отличен от линейного леса
(т. е. дизъюнктной суммы путей), и что H2 ∈ X2 \ X1. В этой работе рас-
сматриваются пары вида (K++

1,3 , H) и (K+
1,4, H), где |V (H)| 6 6, K1,n— звезда

с n листьями, K++
1,3 —результат добавления к K1,3 двух изолированных вер-

шин, K+
1,4 —результат добавления к K1,4 изолированной вершины. Справед-

ливо следующее

Утверждение. Пусть X = Free({K++
1,3 , H}) или X = Free({K+

1,4, H}), где
|V (H)| 6 6. Тогда задача 3-ВР полиномиально разрешима в классе X , если
H ∈ X2, а иначе она является NP-полной для X .

Работа выполнена при финансовой поддержке Министерства Образования
и Науки РФ (проект FSMG-2024-0025).
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Комбинаторные конфигурации
для линейной среды

алгоритмов шифрования
Малышев Фёдор Михайлович
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Основная идея построения современных блочных шифраторов восходит к
квадрату Полибия (III век до н. э.). Шеннон называл его дробным шифром [1].
Квадрат Полибия оказался идеальной конструкцией для воплощенияШенно-
ном его идей по обеспечению в шифрах рассеивания и перемешивания. Пере-
мешивание нацелено на обеспечение существенной зависимости каждой ком-
поненты шифрблока от всех компонент соответствующего открытого блока,
а за счёт рассеивания исключается возможность применения в вероятност-
ных методах криптографического анализа статистик от небольшого числа
компонент открытых и соответствующих шифрованных блоков.
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Требования Шеннона по перемешиванию и рассеиванию обеспечиваются
повторными произведениями двух простых не коммутирующих операций,
при этом для одной операции можно ограничиться локальными перемеши-
ваниями, а в качестве второй операции первое время использовалась даже
перестановка бит шифруемого блока, отвечающая умножению на подстано-
вочную матрицу P ∈ GL(v, 2), где v—длина одного блока в битах.

С появлением в начале 90-х годов прошлого века разностного и линей-
ного методов криптографического анализа (см. [2]) использование подстано-
вочных матриц P стало нежелательным, предпочтительней использование
матриц L ∈ GL(v, 2) общего вида. Наличие у матрицы L или у L−1 строк
либо столбцов веса 1 (с одной единицей) наследует выявленные криптогра-
фические слабости подстановочных матриц P . В то же время представляют
интерес разреженные матрицы L как наиболее просто реализуемые, при этом
матрицы L−1 (с учётом расшифрования) тоже должны быть разреженными.
В этой связи возникают следующие понятия (см. [3]).

Определение 1. Матрицу L ∈ GL(v, 2) (рассматриваемую с точностью до
независимых перестановок строк и столбцов) называем k-матрицей, если
у неё и у матрицы L−1 в каждой строке и в каждом столбце k единиц и
v − k нулей. Соответствующее семейство из v подмножеств мощности
k в множестве X = {1, . . . , v} с такой матрицей инциденций называем k-
конфигурацией.

Здесь k нечётное, иначе матрица L была бы вырожденной. Подстановочные
матрицы являются 1-матрицами. При чётном v инвертирование элементов k-
матрицы предоставляет (v − k)-матрицу. Операция сложения подмножеств
A,B ⊆ X по правилу A+B = (A ∪B)�(A ∩B) позволяет сформулировать
определение эквивалентного понятию k-матрицы понятия k-конфигурации.

Определение 2. Совокупность X ⊂ 2X из v подмножеств мощности k в
множестве X, |X| = v, называем k-конфигурацией, если:
i) каждый элемент x ∈ X принадлежит ровно k подмножествам из X ;
ii) каждый элемент x ∈ X является суммой (как подмножество {x}) ров-

но k подмножеств из X , причём каждое подмножество из X участвует
в качестве слагаемого ровно в k таких суммах.

Результаты многих авторов о строении неразложимых k-конфигураций
(когда соответствующие гиперграфы связны) имеются в [3], где, в частно-
сти, доказываются следующие две теоремы.

Теорема 1. При любых чётном v и нечётном k, 0 < k < v, существу-
ет неразложимая k-конфигурация. Если при нечётных v и k существу-
ет k-конфигурация, то v > k + (1 +

√
4k − 3)/2. Для k 6 17 и всех
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v > k + (1 +
√

4k − 3)/2 существует k-конфигурация за исключением при
k = 3 значения v = 7, когда её не существует.

Теорема 2. При каждом v = 2w, w > 2, неразложимая 3-конфигурация
состоит из подмножеств в группе вычетов Zv вида {2i, 2i + 1, 2i + 2},
{2i, 2i + 1, 2i + 3}, i = 0, 1, . . . , w − 1. Для нечётных v > 7 не существует
неразложимых 3-матриц. Для v = 5 3-конфигурация отвечает триангуля-
ции листа Мёбиуса.

Класс 5-конфигураций оказался существенно богаче [4]. С помощью
компьютерных вычислений Комягин М.М. показал, что с точностью до
комбинаторной эквивалентности среди неразложимых 5-конфигураций для
v = 9, 10, 11, 12 имеется соответственно ровно 1, 34, 386, 71355 5-конфигура-
ций. Неразложимые 5-конфигурации для v = 6 и v = 8 состоят из дополнений
к подмножествам соответственно 1- и 3-конфигураций. Для v = 8 3-конфигу-
рация может быть как неразложимой, так и разложимой, разбиваемой на две
3-конфигурации с v = 4. Для v = 7 5-конфигураций не существует по теоре-
ме 1. К настоящему времени усилиями Тришина А.Е. [5] и Фролова А.А. [6]
получены все 5-конфигурации в виде 5-подмножеств абелевых групп, полу-
чающихся из одного параллельными сдвигами.

В известных примерах 5-конфигураций задействован весь спектр средств,
привлекавшихся ранее для построения k-конфигураций [3], включая пра-
вильные многогранники, регулярные и симметрические графы, квадратич-
ные вычеты по простому модулю, конечные группы, (v, k, λ)-конфигурации,
включая конфигурации, которые отвечают совершенным разностным множе-
ствам, конечным проективным плоскостям и матрицам Адамара. В построе-
нии k-конфигураций в разное время принимали участие Брославский М.В.,
Зубков А.М., Комягин М.М., Красулина Е. Г., Малышев Ф.М., Сачков В.Н.,
Тараканов В.Е., Тришин А.Е., Фролов А.А.

Ориентируясь на максимально разреженные матрицы L,L−1 ∈ GL(v, 2),
возникает понятие {2, 3}-конфигурации.

Определение 3. Совокупность X ⊂ 2X из v подмножеств мощности либо
2 либо 3 в множестве X, |X| = v, называем {2, 3}-конфигурацией, если:
i) каждый элемент x ∈ X принадлежит либо 2, либо 3 подмножествам

из X ;
ii) каждый элемент x ∈ X является суммой (как подмножество {x}) ли-

бо 2, либо 3 подмножеств из X , причём каждое подмножество из X
участвует в качестве слагаемого либо в 2, либо в 3 таких суммах.

Теорема 3. Любая неразложимая {2, 3}-конфигурация либо является од-
ной из 3-конфигураций из теоремы 2, либо имеет матрицу инциден-
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ций

1 1 0
1 1 1
0 1 1

 размера 3 × 3 или


J K O · · · O O O
O J K · · · O O O
· · · · · · · · · · · · · · · · · · · · ·
O O O · · · O J K
K O O · · · O O J

 размера

2w × 2w, w > 2, где J =

(
1 1
1 1

)
, K =

(
0 0
0 1

)
, O =

(
0 0
0 0

)
.
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Рассматриваются конечные обыкновенные графы, т. е. неориентированные
графы G = (V,E) с множеством вершин V = V (G) и множеством рёбер
E = E(G), не содержащим петель и кратных рёбер.

Задача об упаковке k-путей в графе (о Pk-упаковке) заключается в следу-
ющем. Дан граф G. Требуется в графе G найти максимальное число путей
размера k, попарно не содержащих общих вершин. Такое число является ин-
вариантом графа и обозначается µPk(G).

Задачи о Pk-упаковке возникают при проектировании электронных плат
с помощью компьютера [1]. Известно, что задача является NP-полной для
k > 3 для графов общего вида [2] и для субкубических графов [3]. Доказана
полиномиальная разрешимость данной задачи в некоторых классах графов
для частных случаев k [4, 5] и для произвольного k [3, 6].
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Определение. Граф называется пороговым, если может быть построен
из одновершинного графа последовательным добавлением в граф одной изо-
лированной вершины или доминирующей вершины, т. е. отдельной верши-
ны, связанной со всеми остальными вершинами.

Мы рассматриваем задачу о Pk-упаковке для фиксированного k в порого-
вых графах и их соединениях.

Упаковки путей в пороговых графах

Каждый пороговый граф является расщепляемым графом. Это значит, что
его вершины можно разделить на клику C и независимое множество I. В
случае, если граф G пороговый, множества I и C могут быть упорядочены
v1, v2, . . . , vq и u1, u2, . . . , up соответственно так, что N(vi−1) ⊆ N(vi) для всех
i ∈ {2, 3, . . . , q} и N(vi) состоит из последовательных вершин u1, u2, . . . , upi
для всех i ∈ {1, 2, . . . , p}. Последовательности v1, v2, . . . , vq и u1, u2, . . . , up
называются совершенным упорядочением множества вершин.

Пусть G—пороговый граф с совершенно упорядоченными независимым
множеством I = (v1, v2, . . . , vq) и кликой C = (u1, u2, . . . , up), причём p > k.

Пусть k чётно и равно 2s. Рассмотрим два случая:
1. Cуществуют такие i1, i2, . . . , is, что i1 < i2 < · · · < is для всех
j ∈ {1, 2, . . . , q} и deg(vx) < j для всех x < ij. Обозначим G

′ граф, полу-
ченный из G удалением вершин v1, v2, . . . , vik, u1, u2, . . . , us. Обозначим w
простой путь в графе G, построенный на вершинах vi1, u1, vi2, u2, . . . , vis, us
в указанной последовательности.

2. Для некоторого t, 0 6 t < s, существуют такие i1, i2, . . . , it, что
i1 < i2 < · · · < it, ∀j ∈ {1, 2, . . . , t}: deg(vij) > j и deg(vx) < j
для всех ij−1 < x < ij, ∀x ∈ {it + 1, it + 2, . . . , p}: deg(vx) 6 t и
p > 2s − t. Обозначим w простой путь в графе G, построенный на вер-
шинах vi1, u1, vi2, u2, . . . , vit, ut, ut+1, . . . , u2s−t в указанной последовательно-
сти. Обозначим G

′ граф, порождённый вершинами u2s−t+1, u2s−t+2, . . . , ur
графа G.

Теорема 1. Пусть M
′ —наибольшая P2s-упаковка графа G

′. Тогда
M
′ ∪ {w}—наибольшая P2s-упаковка графа G.

Пусть теперь k нечётно и равно 2s+1. Рассмотрим аналогично два случая:
1. Cуществуют такие i1, i2, . . . , is, что i1 < i2 < · · · < is для всех
j ∈ {1, 2, . . . , q} и deg(vx) < j для всех x < ij. Обозначим G

′

граф, полученный изG удалением вершин v1, v2, . . . , vis, vis+1, u1, u2, . . . , us.
Обозначим w простой путь в графе G, построенный на вершинах
vi1, u1, vi2, u2, . . . , vis, us, vis+1 в указанной последовательности.
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2. Для некоторого t, 0 6 t < s, существуют такие i1, i2, . . . , it, что
i1 < i2 < · · · < it, ∀j ∈ {1, 2, . . . , t}: deg(vij) > j и deg(vx) < j для
всех ij−1 < x < ij, ∀x ∈ {it + 1, it + 2, . . . , p}: deg(vx) 6 t и p > 2s− t или
t = s, is = q и p > s+ 1. Обозначим G

′ граф, полученный из G удалением
вершин v1, v2, . . . , vis, vis+1, u1, u2, . . . , us. Обозначим w простой путь в гра-
фе G, построенный на вершинах vi1, u1, vi2, u2, . . . , vis, us, vis+1 в указанной
последовательности.

Теорема 2. Пусть M
′ —наибольшая P2s+1-упаковка графа G

′. Тогда
M
′ ∪ {w}—наибольшая P2s+1-упаковка графа G.

Отметим, что граф G
′ полный или также пороговый. Таким образом, за-

дача о Pk-упаковке в пороговом графе сводится к задаче нахождения его
совершенного упорядочения, то есть к задаче сортировки вершин множеств
I и C по их степеням, после чего задача нахождения очередного элемента
упаковки решается последовательным просмотром вершин.

Теорема 3. Задача о Pk-упаковке в пороговых графах может быть решена
за время O(|G|2), где |G|—число вершин графа.

Упаковки путей в соединениях пороговых графов

Соединением двух графов G1 = (V1, E1) и G2 = (V2, E2), где V1 ∩ V2 = ∅,
называется граф G1 ◦G2 = (V1 ∪ V2, E1 ∪ E2 ∪ (V1 × V2)).

Пусть G1 и G2 —пороговые графы с совершенно упорядоченными неза-
висимыми множествами I1 = (v1,1, v1,2, . . . , v1,q1) и I2 = (v2,1, v2,2, . . . , v2,q2) и
кликами C1 = (u1,1, u1,2, . . . , u1,p1) и C2 = (u2,1, u2,2, . . . , u2,p2) соответственно.

Рассмотрим граф G = G1 ◦ G2. Легко заметить, что вершины графа G
можно разделить на клику C = C1 ∪ C2 и биклику B = I1 ∪ I2.

Без ограничений общности предположим, что q1 6 q2. Если q1 +p1 > q2−1,
то граф G содержит гамильтонов путь. Тогда задача о Pk-упаковке решается
простым разбиением этого пути на пути порядка k и, может быть, один путь
порядка, меньшего k.

Иначе рассмотрим путь
(v2,1, v1,1, v2,2, v1,2, . . . , v1,q1, v2,q1+1, u1,1, v2,q1+2, u1,2, . . . , u1,p1, v2,q1+p1+1).

Выделим в нём последовательно пути порядка k, начиная с вершины v2,1

до тех пор, пока это возможно. Полученное множество путей обозначим
M1. Оставшиеся вершины множества B образуют независимое множество
I
′

2 = (v2,q1+p1−t+2, . . . , v2,q2), где 2t или 2t+1 — остаток от деления 2(q1 +p1)+1
на k.

Граф G
′, полученный удалением всех вершин найденных путей, является

пороговым. По теореме 3, в нём можно найти наибольшую Pk-упаковку M2

за время O(|G′|2).
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Теорема 4. M1 ∪M2 является наибольшей Pk-упаковкой графа G.

Теорема 5. Задача о Pk-упаковке в соединениях пороговых графов может
быть решена за время O(|G|2), где |G|—число вершин графа.
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Введение

В настоящее время создание всевозможных ассистентов (или ко-пилотов),
позволяющих облегчить инженерам процесс дизайна печатных плат, — одна
из актуальных задач САПР. Данная публикация посвящена ассистенту для
проектирования схематики печатных плат. Определяются инженерная зада-
ча, а также математические проблемы из области теории графов и области
ИИ, к решению которых сводится решение исходной инженерной задачи. Це-
лью данной публикации является приглашение заинтересованных исследо-
вательских команд к кооперации для совместного решения представленных
математических проблем.
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Описание задачи

Одним из основных этапов процесса проектирования печатных плат (ПП)
является редактирование схем. Работая над схемой ПП, инженер имеет дело
со списком компонент ПП и соединениями между контактами разных компо-
нент. Последовательное добавление компонент и соединение их контактов мо-
жет занять значительное время, и это процесс, крайне подверженный ошиб-
кам. Существуют отдельные группы инженеров, занимающиеся просмотром
таблицы компонент и поиском соответствующих компонент. Используя тех-
нологии искусственного интеллекта (ИИ), а также схемы, созданные ранее,
можно помочь инженерам разрабатывать новые схемы, предложив одну или
несколько наиболее вероятных компонент и соединений контактов компонент.
Подобный помощник (или ко-пилот) позволяет сократить время работы ин-
женеров и снижает вероятность ошибок.

Наиболее естественная математическая форма для описания схемы печат-
ной платы— гиперграфы специального вида, в которых каждое ребро соот-
ветствует некоторому соединению в схеме, и оно помечено названиями кон-
тактов компонент, участвующих в данном соединении. Предположим, что
любой гиперграф нетлиста можно разбить на набор гиперграфов размера не
более заданного. Тогда один из вариантов схемы работы рекомендательной
системы ко-пилота: предварительно нарезать базу данных (БД) из гипергра-
фов ограниченного размера и ограниченного диаметра, а затем в реальном
времени по каждому запросу (текущей схеме пользователя) находить в базе
похожие гиперграфы.

В первом приближении задача поиска похожего гиперграфа может быть
сведена к задаче нахождения похожего ориентированного псевдомультигра-
фа или ориентированного псевдографа, в котором каждая дуга помечена
некоторым натуральным числом, означающим кратность этой дуги. Каж-
дая вершина такого псевдографа соответствует некоторой компоненте ПП,
наличие дуги от одной вершины до другой определяется существованием
или отсутствием соединения между соответствующими компонентами ПП,
а кратность дуги — количеством таких соединений.

Также в первом приближении можно считать, что задача определения
сходства ставится для двух ориентированных псевдографов с равным коли-
чеством вершин. В более общем случае, когда один из графов имеет большее
количество вершин, требуется находить максимально близкий подграф этого
графа с числом вершин, равным числу вершин второго графа.

Итак, пусть G1 = (V1, E1) и G2 = (V2, E2) —два ориентированных псевдо-
графа, которые имеют одинаковое число вершин n : |V1| = |V2| = n. Пусть
дана мера близости между вершинами двух графов d : V1×V2 → [0; 1]. Пусть
c— это функция кратности рёбер из E1 и E2, то есть c : E1∪E2 → N, где N—
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множество натуральных чисел. Без ограничения общности будем считать, что
оба графа являются полными, а функция c принимает целые неотрицатель-
ные значения, то есть c : E1 ∪ E2 → Z+, где значение 0 означает отсутствие
дуги в оригинальном псевдографе.

Произвольное взаимно однозначное отображение m : V1 ↔ V2 назовем
непротиворечивым тогда и только тогда, когда c (v1, v2) 6 c (m (v1) ,m (v2)),
∀v1, v2 ∈ V1. Пусть M (G1, G2) — это множество всех непротиворечивых отоб-
ражений m : V1 ↔ V2.

Ценой отображения m назовем следующую величину:

dist (G1, G2,m) =
∑
v∈V1

d (v,m (v)) .

В качестве меры близости двух псевдографов G1 и G2 выберем
dist (G1, G2) = max

m∈M(G1,G2)
dist (G1, G2,m).

Задача вычисления значения dist (G1, G2) и нахождения непротиворечиво-
го отображения m, на котором достигается максимум суммы, является NP-
трудной задачей. На практике требуется решать аппроксимационную зада-
чу, где необходимо построить алгоритм, работающий с минимально возмож-
ной (например, полиномиальной) сложностью и находящий хорошее реше-
ние с заданной вероятностью p, p ∈ [0.85; 0.95], и заданной точностью ∂,
∂ ∈ [0.9; 0.95].

Определяется набор исходных данных PAIRS = {(G1, G2)}, состо-
ящий из большого числа пар, для которого необходимо построить та-
кой алгоритм ALG минимально возможной сложности, который для па-
ры (G1, G2) ∈ PAIRS находит такое непротиворечивое отображение
ALG (G1, G2), что
|(G1, G2) ∈ PAIRS, dist (G1, G2, ALG(G1, G2))) > ∂ × dist(G1, G2)|

|PAIRS|
> p,

где запись |X| обозначает мощность множества X.
Данная проблема сталкивается с другими известными проблемами теории

графов.

Связанные проблемы

Поиск изоморфного подграфа. Если при построении алгоритма ALG
не учитывать информацию о вершинах, то задача сведётся к известной NP-
трудной проблеме изоморфизма подграфов. В нашем случае выбор диаметра
графов в PAIRS и других гиперпараметров, возможно, позволяет постро-
ить алгоритм, решающий задачу за время O(n3). У известного алгоритма
VF2 [1] время работы Θ(n2) в лучшем случае и Θ(n! ·n) в худшем. Случаи n2
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удовлетворяют практическим нуждам, но случаи с n! · n могут радикально
увеличить среднее время работы алгоритма на PAIRS. Если процент таких
сложных пар не больше (1− p), можно пропускать часть кандидатов, моди-
фицировав VF2 для задачи inexact subgraph matching’a.

Существует много прикладных подходов к решению задачи изоморфиз-
ма подграфов, гарантии для таких алгоритмов считают отдельно на разных
классах входных графов. Один из них, PathLAD+ [2], использует зондиру-
ющий поиск и сложную стадию фильтрации. Дают ли эти стадии или осо-
бенности других подходов преимущество в описанной выше задаче и можно
ли построить на их основе удовлетворяющие практическим нуждам алгорит-
мы— вопрос исследования.
Задача о назначениях с ограничениями. Другой случай, когда пона-

чалу можно целиком игнорировать информацию о связях, но максимально
полно учесть информацию о степени похожести вершин графов. Задача све-
дётся к задаче о назначениях. Линейная задача о назначениях обычно ре-
шается одной из модификаций венгерского алгоритма за время O(n3) или
даже за время O(n2.5 · log2(W )), когда стоимость назначения получается за-
дать целыми весами в отрезке [0,W ] [3]. Описанная выше задача может быть
сведена к такому случаю преобразованием, сопоставляющим d с набором дис-
кретных значений. Кроме того, показано, что для некоторых графов можно
найти решение за линейное время [4], однако это требует очень жёстких (и
непрактичных) ограничений на функцию стоимости назначения.

Для учета связей в таком подходе можно, например, устанавливать, что
некоторые вершины графа G1 не могут быть назначены в часть вершин гра-
фа G2, то есть решать задачу о назначениях с ограничениями. Ограничения
можно вводить итеративно. В пределе, когда все связи таким образом бу-
дут учтены, задача снова сведётся к поиску изоморфизма графов, теперь
уже с учетом стоимости замены вершин. Аналогично предыдущему пункту,
для практических нужд подходит решение, возможно пропускающее часть
правильных ответов в угоду скорости при заданных выше ограничениях на
качество.
Расстояние редактирования графа. Ещё один способ подходить к по-

иску «похожих» графов— введение некоторой метрики близости. Первым
естественным решением будет редакторское расстояние (GED, см., напри-
мер, [5]) — сколько операций удаления, замены и добавления (с разными сто-
имостями) вершин/рёбер нужно сделать, чтобы преобразовать один граф в
другой. Вычисление GED предполагает нахождение пути редактирования с
минимальной суммарной стоимостью. Задачу вычисления оптимального пути
можно свести к задаче поиска кратчайшего пути, зачастую она решается ал-
горитмами типа А* (использует эвристику). Кроме того, для GED возможно
построить аппроксимации, вычисляемые за линейное время [6]. Удовлетво-
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ряют ли аппроксимации конкретным практическим требованиям и можно ли
построить другие удобные метрики близости — также вопрос изучения.
Приглашаем к сотрудничеству все заинтересованные организации для

решения вышеописанной задачи.
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Импликативное замыкание на множестве
мультиопераций
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В теории дискретных операций достаточно давно изучаются частичные,
гипер- и мультиоперации— операции, заданные на конечном множестве A и
принимающие в качестве своих значений подмножества (с некоторыми огра-
ничениями или без) этого множества.

Одно из важнейших направлений в исследовании дискретных операций—
классификация. Широко распространенным при этом является подход, ос-
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нованный на операторах замыкания. Классы, замкнутые относительно рас-
сматриваемых операторов, образуют соответствующую классификацию рас-
сматриваемого множества операций.

Наиболее известной является классификация, основанная на операторе су-
перпозиции. Однако классификация, основанная только на суперпозиции, да-
же для частичных, гипер- и мультиопераций заданных на двухэлементном
множестве приводит к континууму замкнутых множеств.

Попытки сократить континуальные классификации приводят к необходи-
мости изучения более сильных операторов замыкания.

Одним из таких является оператор параметрического замыкания, предло-
женный А.В. Кузнецовым [1]. В [2] дан обзор операторов, являющихся рас-
ширением оператора параметрического замыкания. В рамках этого подхода
можно выделить оператор импликативного замыкания. Действие оператора
импликативного замыкания на множестве частичных функций (операций)
рассматривается в [3]. Мы рассматриваем оператор мультипликативного за-
мыкания на множестве мультиопераций.

Пусть Ek = {0, 1, . . . , k − 1}. Для произвольного конечного множества A
через |A| обозначим мощность, а через B(A) —множество всех подмножеств.

Для целого положительного n отображение f : En
k → B(Ek) назовем n-

местной мультиоперацией ранга k. Множество всех n-местных мультиопера-
ций обозначим какMn, а множество всех мультиопераций ранга k какMk.
Множество всех мультиопераций ранга k содержит в себе множество опера-
ций Ok и множество частичных операций O∗k.

Пусть f0 — n-местная мультиоперация, f1, . . . , fn—m-местные мультиопе-
рации. Суперпозиция с внешней операцией f0 и внутренними операциями
f1, . . . , fn определяет m-местную мультиоперацию s(f0, f1, . . . , fn) следую-
щим образом: для набора (α1, . . . , αm) ∈ Em

k по определению∗

s(f0, f1, . . . , fn)(α1, . . . , αm) =
⋃

βi∈fi(α1,...,αm)

f0(β1, . . . , βn).

Если в последовательности β1, . . . , βn некоторое βi = ∅, то f0(β1, . . . , βn) тоже
равно ∅.

Пусть A—некоторое множество мультиопераций. Определим понятие
«мультиоперация над A»:
— если f ∈ A, то f —мультиоперация над A;
— если f —мультиоперация над A, то операция, полученная из f перестанов-

кой или отождествлением аргументов, является мультиоперацией над A;
∗Определение суперпозиции мультиопераций позволяет находить значение мультиопераций не только

на двоичных наборах. Подробно можно посмотреть в [4].
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— если f0 — n-местная и fi—m-местная мультиоперации над A или мульти-
операции-переменные (i ∈ {1, . . . , n}), то мультиоперация s(f0, f1, . . . , fn)
является мультиоперацией над A.
Язык импликативного замыкания Imp использует формулы логики преди-

катов, построенные с помощью логических связок конъюнкции, импликации
и квантора существования, а также отношения равенства термов. С точными
определениями можно ознакомиться, например, в [3]. Для изучения муль-
тиопераций вместо отношения равенства мы будем использовать отношение
включения: элементарной формулой будем называть выражение (t1 ⊆ t2),
где t1, t2 — термы. При этом, для упрощения записи, мы не будем разделять
одноэлементное множество и элемент этого множества, если это не вызывает
недоразумений.

Пусть Q ⊆ Mk, f(x1, . . . , xn) ∈ Mk, Φ(x1, . . . xn, y) —формула языка Imp
со свободными переменными x1, . . . xn, y, все функциональные символы кото-
рой являются обозначениями мультиопераций над Q. Будем говорить, что
формула Φ импликативно выражает операцию f(x1, . . . , xn) через опера-
ции множества Q, если множества истинности формулы Φ и отношения
y ⊆ f(x1, . . . , xn) совпадают. Множество всех операций, импликативно вы-
разимых через операции множества Q, назовем импликативным замыканием
множества Q и обозначим Imp[Q]. Множество Q, которое совпадает со своим
импликативным замыканием, называется импликативно замкнутым классом.
Через [Q] обозначаем замыкание с оператором суперпозиции.

Утверждение 1. Любой имплиикативно замкнутый класс мультиопера-
ций замкнут относительно операции суперпозиции.

Утверждение 2. Для любого множества Q ⊆ Ok справедливо: если
[Q] = Ok, то Imp[Q] =Mk.

Утверждение 3. Мультиоперации f1(x) = x, f2(x) ≡ Ek, f3(x) ≡ ∅ и

p(x1, x2, x3) =

{
x3, если x1 = x2;

x1 иначе;

содержатся в каждом импликативно замкнутом классе мультиопераций.

Пусть π—подстановка на множестве Ek, положим также, что π(∅) = ∅.
Через Sπ обозначим множество всех мультиопераций для которых π— эндо-
морфизм, т. е. πf(x1, . . . , xn) = f(π(x1), . . . , π(xn)).

Теорема 1. В M3 все импликативно предполные классы исчерпываются
классами вида Sπ, где π—нетождественная подстановка на E3.
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Исследование выполнено за счет гранта Российского научного фонда
№ 24-21-00011 в Бурятском государственном университете им. Д. Банзаро-
ва, https://rscf.ru/project/24-21-00011.

Список литературы
[1] Кузнецов А.В. О средствах для обнаружения невыводимости и невыра-

зимости // Логический вывод. М. : Наука, 1979. С. 5–33.
[2] Марченков С.С. Логические расширения оператора параметрического за-

мыкания // Дискретная математика. 2022. Т. 34, вып. 3. С. 52–62.
[3] Марченков С.С. О действии оператора импликативного замыкания на

множестве частичных функций многозначной логики // Дискретная ма-
тематика. 2020. Т. 32, вып. 1. C. 60–73

[4] Пантелеев В.И., Тагласов Э.С. ESI-замыкание мультиопераций ранга 2:
критерий полноты, классификация и типы базисов // Интеллектуальные
системы. Теория и приложения. 2021. Т. 25, вып. 2. С. 55–80.

О некоторых SI∗-замкнутых классах
мультиопераций ранга 2

Пантелеев Владимир Иннокентьевич1,
Фомина Ирина Владимировна2

1 Иркутский государственный университет;
Бурятский государственный университете имени Доржи Банзарова; vl.panteleyev@gmail.com

2 Бурятский государственный университете имени Доржи Банзарова; fomina-irina0104@yandex.ru

Рассматриваем мультиоперации ранга 2, т. е. мультиоперации, заданные на
множестве E = {0, 1}. Множество M2 мультиопераций ранга 2 содержит в
себе множество операций, частичных и гиперопераций. Оператор суперпо-
зиции для мультиопераций можно определить неоднозначно [1]. Основные
подходы в определениях основаны на теоретико-множественных операциях
объединения и пересечения.

Основной проблемой при классификации мультиопераций относительно су-
перпозиции является континуальность множества классов, замкнутых отно-
сительно суперпозиции. В связи с этим традиционной является задача опи-
сания некоторой части решетки замкнутых классов. Интерес вызывают ин-
тервалы, начинающиеся с множества операций [2].

Будем считать известными такие понятия, как клон, мультиклон, сохране-
ние предиката функцией (операцией). Предикат будем задавать матрицей, в
которой столбцами являются наборы из предиката.

Суперпозиция s(f0, f1, . . . , fm) с внешней f0 и внутренними мультиопераци-
ями f1, . . . , fm (SI-суперпозиция), основанная на пересечении, определяется
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следующим образом. Если (a1, . . . , an) ∈ En, то по определению

s(f0, f1, . . . , fm) =


∅, если найдется i из {1, . . . ,m} : fi(a1, . . . , an) = ∅;⋂
bi∈fi(a1,...,an)

f(b1, . . . , bm), если оно не пусто;⋃
bi∈fi(a1,...,an)

f(b1, . . . , bm) иначе.

Пусть S —множество самодвойственных операций (множество самодвой-
ственных булевых функций). Справедлива

Теорема 1 ([1]). Интервал I(S,M2) содержит ровно 17 различных муль-
тиклонов.

Будем рассматривать суперпозицию, основанную на пересечении, но ин-
терпретируя при этом пустое множество как «поломку» (SI∗-суперпозицию).
Если (a1, . . . , an) ∈ En, то по определению

s(f0, f1, . . . , fm) =



∅, если найдется i из {1, . . . , n} : fi(a1, . . . , an) = ∅
или найдется набор (b1, . . . , bm), где bi ∈ fi(a1, . . . , an)

для которого f0(b1, . . . , bm) = ∅;⋂
bi∈fi(a1,...,an)

f(b1, . . . , bm), если оно не пусто;⋃
bi∈fi(a1,...,an)

f(b1, . . . , bm) иначе.

Это определение позволяет вычислять значение мультиоперации на любом
наборе (a1, . . . , am) ∈ (2E)m.

В [3, 4] описаны классы S1, S2, S
′, K5. Определим дополнительно следую-

щие множества мультиопераций:

— S−2 —класс мультиопераций, сохраняющих предикат
(

0 1 −
1 0 −

)
;

— S
−∗
2 —класс мультиопераций, сохраняющих предикат

(
0 1 − ∗
1 0 − ∗

)
;

— K1 —множество, состоящее из всех мультиопераций f таких, что для лю-
бого двоичного набора α̃ мультиоперация f возвращает ∅ на этом наборе
или противоположном;

— K2 —класс мультиопераций, сохраняющих следующий предикат:(
0 1 − ∗ ∗ 0 ∗ 1 ∗ −
1 0 − ∗ 0 ∗ 1 ∗ − ∗

)
.

Справедливы следующие утверждения.
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Утверждение 1. Для любой мультиоперации f ∈ S
−∗\(S−∪{∗}) справедли-

во S
−∗ = [S−

⋃
{f}], здесь {∗}—множество всех операций от любого числа

переменных, тождественно равных ∅.

Утверждение 2. Класс K2 является предполным в M2.

Утверждение 3. Для любой операции f ∈ K2\(S
−∗∪ K1) справедливо

K2 = [S
−∗⋃K1

⋃
{f}].

Утверждение 4. Для любой операции f ∈ K2 \ K5 справедливо
K2 = [K5

⋃
{f}].

Утверждение 5. Для любой операции f ∈ K5 \ S ′ справедливо
K5 = [S ′

⋃
{f}].

Теорема 2. Интервал I (S,M2) содержит ровно 19 различных мультикло-
нов, а именно мультиклоны, представленные на рис. 1.

Рис. 1: Интервал I (S,M2)

Исследование выполнено за счет гранта Российского научного фонда
№ 24-21-00011 в Бурятском государственном университете им. Д.Банзарова,
https://rscf.ru/project/24-21-00011.
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Язык мультиопераций

Пусть A—множество, B(A) —множество всех подмножеств A. Тогда
gn : An → B(A) — n-местная мультиоперация.

Алфавит языка мультиопераций определяется следующим образом. Сиг-
натура F — это множество мультифункциональных символов с зафиксиро-
ванной размерностью (местностью); при этом выделенными нульместными
символами будут: o, ci; ¬,&,∨,→—логические символы; ⊆— внелогический
символ; (, ) — технические символы.

Определение терма:
— любой нульместный символ сигнатуры F является термом;
— fn(t1, . . . , tn) — терм, где fn ∈ F и t1, . . . , tn термы.

Определение формулы:
— (t1 ⊆ t2) —формула, где t1, t2 термы;
— ¬Φ, (Φ&Ψ), (Φ ∨Ψ), (Φ→ Ψ) —формулы, где Φ,Ψ формулы.

Введем семантику языка мультиопераций. Интерпретация сигнатуры F в
множество A— это отображение γ : F →M в множествоM мультиопераций
на A, сохраняющее местность мультифункционального символа и мультио-
перации, при этом γ(o) = ∅, γ(ci) — одноэлементные множества.

Значение γ[t] терма t при интерпретации γ:
— если t ≡ f 0, то γ[t] = γ(f 0);
— если t ≡ fn(t1, . . . , tn), то γ[t] =

⋃
ai∈γ[ti]

{a | a ∈ γ(fn)(a1, . . . , an)}.
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В дальнейшем ограничимся интерпретациями на конечные множества.
Двузначная семантика языка мультиопераций:

— если Φ ≡ t1 ⊆ t2, то δ[Φ] = 1 при γ[t1] ⊆ γ[t2],
δ[Φ] = 0 в противном случае;

— если Φ ≡ ¬Ψ, то δ[Φ] = 1− δ[Ψ];
— если Φ ≡ Ψ1 & Ψ2, то δ[Φ] = min{δ[Ψ1], δ[Ψ2]};
— если Φ ≡ Ψ1 ∨Ψ2, то δ[Φ] = max{δ[Ψ1], δ[Ψ2]};
— если Φ ≡ Ψ1 → Ψ2, то δ[Φ] = max{1− δ[Ψ1], δ[Ψ2]}.

Алгоритм для вычислений в этой семантике разработан в [1].
Первый пункт приведенного определения можно обобщить следующим об-

разом. Обобщенная семантика языка мультиопераций:

— если Φ ≡ t1 ⊆ t2, то δ[Φ] =
|γ[t1] ∩ γ[t2]|
|γ[t1]|

при |γ[t1]| > 0,

δ[Φ] = 1 при |γ[t1]| = 0.
Пусть ≶ ∈ {6, <,>, >}. Тогда если при любой интерпретации верно

δ[Φ] ≶ α, то говорим, что Φ ≶ α тождественно выполняется в обобщенной
семантике.

Исчисление мультиопераций табличного типа

Отмеченные формулы— это выражения вида Φ 6 α, Φ < α, Φ > α, Φ > α,
где α—рациональное число от 0 до 1. Пусть . ∈ {6, <}; & ∈ {>, >}.

Правила построения таблиц:

(¬&) ¬Φ& α
Φ. 1− α (¬.)

¬Φ. α
Φ& 1− α

(&&)
Φ & Ψ& α

Φ& α
Ψ& α

(&.) Φ & Ψ. α
Φ. α | Ψ. α

(∨&) Φ ∨Ψ& α
Φ& α | Ψ & α

(∨.)
Φ ∨Ψ. α

Φ. α
Ψ. α

(→&) Φ→ Ψ& α
Φ. 1− α | Ψ& α

(→.)
Φ→ Ψ. α
Φ& 1− α

Ψ. α

(&) t1 ⊆ t2& α
t1 ⊆ t2> β

при α > β (.) t1 ⊆ t2. α
t1 ⊆ t2< β

при α < β
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(> 0)
t1 ⊆ t2> 0
t2 ⊆ t1> 0

(6 0)
t1 ⊆ t26 0
t2 ⊆ t16 0

(⊆&)
ti ⊆ si> 1

t ⊆ f(t1, . . . , ti, . . . , tn)& α
t ⊆ f(t1, . . . , si, . . . , tn)& α

(⊆.)
si ⊆ ti> 1

t ⊆ f(t1, . . . , ti, . . . , tn). α
t ⊆ f(t1, . . . , si, . . . , tn). α

Разобьем все введенные правила на три группы:
1) (&), (.);
2) (&.), (∨&), (→&);
3) все остальные правила.

Для множество отмеченных формул Σ построение таблицы (дерева) опре-
деляется по индукции:
1. Φ0 —корень дерева, где Φ0 ∈ Σ.
2. D— дерево, Φ0, . . . ,Φi, . . . ,Φn— ветка дерева:

— если Ψi из Σ, то к ветке добавляется одна последовательная вершина,
нумерованная этой формулой;

— если к Φi применяется правило из первой группы, то к ветке добавляет-
ся одна последовательная вершина, нумерованная согласно применен-
ному правилу, где β встречается в качестве отметки в формулах этой
ветки;

— если к Φi применяется правило из второй группы, то к ветке добавляют-
ся две вершины одного уровня, нумерованные согласно примененному
правилу.

— если к Φi применяется правило из третьей группы, то к ветке добавля-
ются одна или две последовательные вершины, нумерованные согласно
примененному правилу.

Ветка замкнутая, если содержит либо Φ . α и Φ > α, либо Φ < α и
Φ& α, либо Φ> 1, либо Φ< 0 хоть для одной формулы Φ, либо t ⊆ t < 1,
либо t ⊆ o > 0 хоть для одного терма t. Применение правила является из-
быточным, если хоть в одной из полученных веток нет новых формул. Вет-
ка финальная, если либо она замкнута, либо применение правил ко всем ее
формулам избыточно. Если все ветки таблицы финальные, то таблица фи-
нальная, а если замкнутые, то таблица замкнутая. Множество отмеченных
формул Σ является опровержимым в исчислении мультиопераций таблично-
го типа, если существует замкнутая таблица для множества Σ. Отмеченная
формула Φ ≶ α выводима из множества отмеченных формул Σ в исчислении
мультиопераций, если множество Σ ∪ {Φ 6≶ α} является опровержимым.

Доказано, что приведенное исчисление является корректным и полным для
обобщенной семантике языка мультиопераций.
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Теорема 1. Для формулы Φ языка мультиопераций тождественно выпол-
няется Φ ≶ α в обобщенной семантике тогда и только тогда, когда отме-
ченная формула Φ ≶ α выводима в исчислении мультиопераций.
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О единичных тестах для схем в базисе
Жегалкина при произвольных константных

неисправностях элементов
Попков Кирилл Андреевич

Институт прикладной математики имени М.В. Келдыша РАН; kirill-formulist@mail.ru

Рассматривается задача синтеза легкотестируемых схем, реализующих за-
данные булевы функции (см. [1]). Пусть имеется схема из функциональных
элементов S с одним выходом, реализующая булеву функцию f(x̃n), где
x̃n = (x1, . . . , xn). Под воздействием некоторого источника неисправностей
один или несколько элементов схемы S могут перейти в неисправное состоя-
ние. В результате данная схема вместо исходной функции f(x̃n) будет реали-
зовывать некоторую булеву функцию g(x̃n), вообще говоря, отличную от f .
Все такие функции g(x̃n) называются функциями неисправности схемы S.

Введём следующие определения [1]. Проверяющим тестом для схемы S
называется такое множество T наборов значений переменных x1, . . . , xn, что
для любой отличной от f(x̃n) функции неисправности g(x̃n) схемы S в T най-
дётся набор σ̃, на котором f(σ̃) 6= g(σ̃). Диагностическим тестом для схе-
мы S называется такое множество T наборов значений переменных x1, . . . , xn,
что T является проверяющим тестом и, кроме того, для любых двух различ-
ных функций неисправности g1(x̃

n) и g2(x̃
n) схемы S в T найдётся набор σ̃,

на котором g1(σ̃) 6= g2(σ̃). Число наборов в T называется длиной теста. В ка-
честве тривиального диагностического (и проверяющего) теста длины 2n для
схемы S всегда можно взять множество, состоящее из всех двоичных n-раз-
рядных наборов. Тест называется полным, если в схеме могут быть неис-
правны сколько угодно элементов, и единичным, если в схеме может быть
неисправен только один элемент. Единичные тесты обычно рассматривают
для неизбыточных схем (см. [1, с. 110–111]), в которых любая допустимая
неисправность любого одного элемента приводит к функции неисправности,
отличной от исходной функции, реализуемой данной схемой.

Пусть зафиксирован вид неисправностей элементов, B —произвольный
функционально полный базис и T — единичный проверяющий тест (ЕПТ) для



Попков К.А. 109

некоторой схемы S в базисе B. Введём следующие обозначения: DB
ЕП(T ) —

длина теста T ; DB
ЕП(S) = minDB

ЕП(T ), где минимум берётся по всем ЕПТ T
для схемы S;DB

ЕП(f) = minDB
ЕП(S), где минимум берётся по всем неизбыточ-

ным схемам S в базисе B, реализующим функцию f ; DB
ЕП(n) = maxDB

ЕП(f),
где максимум берётся по всем булевым функциям f от n переменных, для
которых определено значение DB

ЕП(f). По аналогии с функциями DB
ЕП мож-

но ввести функции DB
ЕД для единичного диагностического теста (ЕДТ), за-

висящие от T , от S, от f и от n. Величины DB
ЕП(n) и DB

ЕД(n) называются
функциями Шеннона длины ЕПТ и ЕДТ соответственно.

Класс допустимых неисправностей функциональных элементов ограничим
константными неисправностями на выходах элементов, при которых значение
на выходе любого неисправного элемента становится равно некоторой буле-
вой константе. Неисправности на выходах элементов называются однотип-
ными константными типа p, если эта константа одна и та же для каждого
неисправного элемента и равна p, и произвольными константными, если
эта константа может быть равна как 0, так и 1 для каждого неисправного
элемента независимо от неисправностей других элементов. Вполне разумно
предполагать, что если в базисе содержится булева константа α, то у элемен-
та, её реализующего, нет входов и не может быть константной неисправности
типа α на его выходе.

При рассмотрении произвольных константных неисправностей на выходах
функциональных элементов ранее были получены следующие результаты.
В [1, с. 116, теорема 10] с использованием метода синтеза схем, предложенно-
го С.М. Редди [2], для базиса Жегалкина B1 = {&,⊕, 1, 0} установлено, что
DB1

ЕП(n) 6 n + 3 при n > 0. Д.С. Романов в [3] для любого функционально
полного базиса B получил оценку DB

ЕП(n) 6 4 (правда, в указанной работе
использовалось несколько другое определение неизбыточных схем). Им же
совместно с Е.Ю. Романовой в [4] установлено неравенство DB1

ЕД(n) 6 22, а
также доказано существование базиса B2, состоящего из булевых функций
от не более чем девяти переменных, для которого DB2

ЕД(n) 6 6. В работе [5],
в частности, получены нижние оценки DB

ЕП(n) > 3 при n > 3 для любо-
го полного базиса B, состоящего из булевых функций от не более чем двух
переменных, а также, возможно, из некоторых других булевых функций спе-
циального вида и не содержащего констант, иDB

ЕД(n) > 3 для любого полного
конечного базиса B при n, большем максимального числа существенных пе-
ременных у функций из B. В [6] установлены равенстваDB3

ЕП(n) = 2 при n > 1

для базиса B3 = {x&y, x, x⊕ y ⊕ z} и DB4

ЕД(n) = 3 при n > 2 для некоторого
базиса B4, состоящего из одной булевой функции от шести переменных; в [7]
для того же базиса B3 доказано, что DB3

ЕД(n) 6 4 при n > 1.
При рассмотрении однотипных константных неисправностей типа p на вы-

ходах элементов Ю.В. Бородина нашла точное значение функции Шеннона
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DB1

ЕП(n) = 1 в случаях p = 1 [8] и p = 0 [9] (совместно с П.А. Бородиным),
где n ∈ N; в работах [10, 7] установлены соотношения DB1

ЕД(n) = 2 при n > 2

в случае p = 0 и DB1

ЕД(n) 6 3 при n > 0 в случае p = 1 соответственно.
Введём обозначения (0̃n) = (0, . . . , 0︸ ︷︷ ︸

n

) и (1̃n) = (1, . . . , 1︸ ︷︷ ︸
n

), где n ∈ N.

Теорема 1. Любую булеву функцию f(x̃n), n > 2, не принадлежащую мно-
жеству {0, 1, x1& . . .&xn, x1& . . .&xn}, можно реализовать неизбыточной
схемой в базисе Жегалкина B1, допускающей ЕПТ {(0̃n), σ̃, (1̃n)}, где σ̃—
произвольный двоичный набор длины n с наименьшим числом единиц, удо-
влетворяющий условию f(σ̃) 6= f(0̃n).

Теорема 2. Для любого n > 0 справедливо неравенство DB1

ЕП(n) 6 3.

Теорема 3. Для любого n > 0 справедливо неравенство DB1

ЕД(n) 6 5.

Последний результат улучшает неравенство DB1

ЕД(n) 6 22 из [4].
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Использование преобразования Фурье для
исследования нелинейности векторных

функций над конечными полями
Рябов Владимир Геннадьевич

НП «ГСТ»; 4vryabov@gmail.com

Пусть Fq означает поле из q элементов, где q = pm и p—простое число, а
Fn
q — n-мерное векторное пространство над полем Fq. Обозначим P n,k

q множе-
ство отображений n-мерного пространства Fn

q в k-мерное пространство Fk
q .

В дальнейшем такие отображения будем называть векторными функциями.
Всякая векторная функция F ∈ P n,k

q однозначно определяется упорядочен-
ным набором своих k координатных функций. В свою очередь, каждая коор-
динатная функция может быть задана многочленом над полем Fq. Для век-
торной функции F алгебраическая степень нелинейности degF определяется
как максимальная из степеней многочленов ее координатных функций. При
выполнении условия deg F 6 1 отображение F является аффинным. Обозна-
чим через An,k

q подмножества аффинных отображений из множества P n,k
q .

Всякой векторной функции F ∈ P n,k
q можно поставить в соответствие век-

тор пространства Fqn

qk
и определить нелинейность отображения F по формуле

NF = min
A∈An,kq

ρ(F,A), (1)

где ρ(F,A) —расстояние Хемминга в пространстве Fqn

qk
. Изучение поведения

величины NF представляет интерес для различных областей кибернетики.
При исследовании нелинейности (1) оказывается удобным использовать

следующий набор параметров векторной функции. Обозначим Mk,n
q множе-

ство матриц с k строками и n столбцами над полем Fq. Всякое аффин-
ное отображение A ∈ An,k

q может быть представлено в виде α0 ⊕ Ax , где
α0 = (a1,0, . . . , ak,0)

T ∈ Fk
q , A ∈Mk,n

q , а x = (x1, . . . , xn)
T ∈ Fn

q . Поставим ему
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в соответствие матрицу [α0,A] ∈ Mk,n+1
q , полученную добавлением α0 ле-

вым столбцом к матрице A. Для векторной функции F ∈ P n,k
q и аффинного

отображения A ∈ An,k
q с матрицей [α0,A] зададим параметр вида

d
[α0,A]
F = (qk − 1)q−k − ρ(F,A)q−n. (2)

Нелинейность связана с набором qk(n+1) параметров вида (2) соотношением

NF = (qk − 1)qn−k − qn max
[α0,A]∈Mk,n+1

q

d
[α0,A]
F . (3)

Введем теперь характеры некоторых абелевых групп. В отличие от распро-
страненной практики определения аддитивных характеров поля через функ-
цию следа, представим поле Fq как векторное пространство Fm

p над простым
полем Fp и зададим отображение Fq в Fp через скалярное произведение
〈a, x〉p в пространстве Fm

p , где x выступает в роли переменной. Определим
характер аддитивной группы поля Fq по формуле χa(x) = e

2πi
p 〈a,x〉p. Пусть

φα(x ) =
∏n

t=1 χat(xt) = e
2πi
p Σnt=1〈at,xt〉p, где α = (a1, . . . , an) и x = (x1, . . . , xn)

являются векторами пространства Fn
q , а знак Σ означает сумму в поле Fp.

Из теории представлений следует, что множество {φα(x ) | α ∈ Fn
q} являет-

ся группой характеров аддитивной группы пространства Fn
q и образует ор-

тонормированный базис унитарного пространства всех комплекснозначных
отображений пространства Fn

q .
Для отображения F ∈ P n,k

q с набором координат (f1, . . . , fk) и ненуле-
вого вектора β = (b1, . . . , bk) ∈ Fk

q зададим комплекснозначную функцию
ϕβ(F ) : Fn

q → C, положив ϕβ(F ) =
∏k

s=1 χbs(fs) = e
2πi
p Σks=1〈bs,fs〉p, называя

ее по аналогии с работой [1] характером F . Коэффициенты в разложении
характера ϕβ(F ) в ряд Фурье по базису {φα(x ) | α ∈ Fn

q} имеют вид

cβF (α) =
1

qn

∑
x∈Fnq

ϕβ(F )φα(x ) =
1

qn

∑
x∈Fnq

e
2πi
p

(
Σks=1〈bs,fs〉p	Σnt=1〈at,xt〉p

)
. (4)

Для коэффициентов Фурье любого из характеров справедливы равенство
Парсеваля

∑
α∈Fnq |c

β
F (α)|2 = 1 и неравенства q−

n
2 6 maxα∈Fnq |c

β
F (α)| 6 1.

Отображения из множества P n,k
q , у которых для любого из характеров все

коэффициенты Фурье по модулю равны q−
n
2 , носят название векторных бент-

функций. Данное определение обобщает определение бент-функций над ко-
нечными полями из работы [2] на случай векторных функций.

Специфика определения характеров и вида коэффициентов Фурье позво-
лила автору в статье [3] получить выражение параметров (2) векторной функ-
ции через коэффициенты Фурье ее характеров (4). Для векторной функ-
ции F ∈ P n,k

q и любой матрицы [α0,A] ∈ Mk,n+1
q , где вектор α0 имеет вид
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(a1,0, . . . , ak,0)
T , выполняется равенство

d
[α0,A]
F =

1

qk

∑
β∈Fkq\{0}

cβF (βA) e−
2πi
p Σks=1〈bs,as,0〉p. (5)

Там же были получены выражения коэффициентов Фурье через аналогичные
коэффициенты составляющих векторной функции при декомпозициях вида

F (x ) = G(x ′)⊕H(x ′′), (6)

где F ∈ P n,k
q , G ∈ P r,k

q , H ∈ P n−r,k
q , x = [x ′, x ′′] ∈ Fn

q , x ′ = (x1, . . . , xr) ∈ Fr
q,

x ′′ = (xr+1, . . . , xn) ∈ Fn−r
q , а также

F (x ) =
(
G(x ), H(x )

)
, (7)

где F ∈ P n,k
q , G ∈ P n,v

q , H ∈ P n,k−v
q и для наборов координатных функций вы-

полняются равенства (g1, . . . gv) = (f1, . . . , fv) и (h1, . . . hk−v) = (fv+1, . . . , fk).
Полученные результаты с учетом соотношения (3) позволяют выразить нели-
нейность векторной функции при этих видах декомпозиции.

Утверждение 1. Для F ∈ P n,k
q вида (6) выполняется равенство

NF = qn − qn−k
[
1 + max

[α0,A]∈Mk,n+1
q

∑
β∈Fkq\{0}

cβG(βA′)cβH(βA′′) e−
2πi
p Σks=1〈bs,as,0〉p

]
,

где A = [A′,A′′] ∈ Mk,n
q , A′ ∈ Mk,r

q , A′′ ∈ Mk,n−r
q , а для F ∈ P n,k

q вида (7)
справедливо равенство

NF = qn−qn−k
[
1+ max

[α0,A]∈Mk,n+1
q

∑
β∈Fkq\{0}

(∑
γ∈Fnq

cβ
′

G(βA	γ)cβ
′′

H (γ)
)
e−

2πi
p Σks=1〈bs,as,0〉p

]
,

где β = [β′, β′′] ∈ Fk
q , β′ = (b1, . . . , bv) ∈ Fv

q и β′′ = (bv+1, . . . , bk) ∈ Fk−v
q .

В статье [3] была также представлена нижняя граница нелинейности вида

NF > qn − qn−k
(
1 + (qk − 1) max

β∈Fkq\{0},α∈Fnq
|cβF (α)|

)
, (8)

которая для векторных бент-функций принимает максимальное значение†,
равное qn − qn−k − gn/2 + qn/2−k. Используя (8), получим следующее.

Утверждение 2. Для F ∈ P n,k
q вида (6) выполняется неравенство

NF > qn − qn−k − qk

qk − 1

(
qr − qr−k −NG

)(
qn−r − qn−r−k −NH

)
.

Замечание. Для F ∈ P n,k
q вида (7) имеем NF > max {NG, NH}.

†Приведенное здесь значение нижней границы нелинейности для векторных бент-функций вытекает
также из результатов работы [4], полученных другим способом.
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Выражение (8) позволяет также, используя известное значение максималь-
ного модуля коэффициентов Фурье характеров отображения, находить клас-
сы векторных функций с нелинейностью не менее заданной.
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Операция GF(2)-shuffle над формальными
языками

Сажнева Елизавета Александровна
Московский государственный университет имени М.В. Ломоносова; sazhneva.eliza@yandex.ru

В работе Бакиновой и др. [1] были определены GF (2)-операции над фор-
мальными языками. Эти операции являются вариантами классической кон-
катенации и звёздочки Клини. Дизъюнкция в определении этих операций
заменяется на исключающее ИЛИ. Заменив в определении конкатенации
дизъюнкцию на исключающее ИЛИ, получим новую операцию, называемую
GF (2)-конкатенацией:

K � L = {w | # разбиений w = uv, где u ∈ K и v ∈ L, нечетно }.
Формальные языки образуют кольцо, где GF (2)-конкатенация рассматри-

вается как операция умножения, а симметрическая разность — как операция
сложения [1]. Более того, каждый язык L, содержащий пустую строку, име-
ет обратный язык относительно операции GF (2)-конкатенация: язык L−1,
удовлетворяющий равенствам L� L−1 = L−1 � L = {ε}.

В статье [1] доказана замкнутость семейства регулярных языков относи-
тельно операций GF (2)-конкатенации и взятия GF (2)-обратного языка.

Кроме классических операций над формальными языками, также исследо-
валось немало других операций, например, циклический сдвиг [2], shuffle [3].
Алгебраические свойства операции shuffle и замкнутость различных классов
языков относительно этой операции— тема ряда недавних теоретических ис-
следований, краткий обзор которых можно найти в статье Пина [4].
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Цель этой работы— определить GF (2)-вариант операции shuffle, исследо-
вать алгебраические свойства новой операции и показать замкнутость регу-
лярных языков относительно этой операции.

Операция GF (2)-shuffle и её основные свойства

Чтобы определить операцию GF (2)-shuffle, необходимо в определении опе-
рации shuffle учитывать только разбиения на непустые строки. Для этого
перепишем определение операции shuffle следующим образом.

Определение 1. Для любых языков K и L их shuffle, K ∃ L, — это множе-
ство всех строк w, представимых в виде w = u1u2 . . . uk, где k > 1, u1 ∈ Σ∗,
u2, . . . . , uk ∈ Σ+, u1u3u5 . . . ∈ K и u2u4u6 . . . ∈ L.

Заменив в определении 1 дизъюнкцию на исключающее ИЛИ, получим
новую операцию GF (2)-shuffle.

Определение 2. Для любых языков K и L их GF (2)-shuffle, обозначаемый
K ∃○ L, — это множество всех строк w, имеющих нечетное число пред-
ставлений в виде w = u1u2 . . . uk, где k > 1, u1 ∈ Σ∗, u2, . . . , uk ∈ Σ+,
u1u3u5 . . . ∈ K и u2u4u6 . . . ∈ L.

GF (2)-shuffle состоит из всех строк w, имеющих нечетное количество раз-
биений, следовательно, K ∃○ L ⊆ K ∃ L.

Пример 1. {ab} ∃ {bc} = {abbc, abcb, babc, bacb, bcab}. Строка abbc
не принадлежит GF (2)-shuffle, так как имеет два представления:
abbc = ab · bc = a · b · b · c, которые исключают друг друга. Поэтому
{ab} ∃○ {bc} = {abcb, babc, bacb, bcab}.

Следующий пример показывает, что некоторые языки имеют обратный
язык относительно операции GF (2)-shuffle.

Пример 2.{ε, ab} ∃○ {ε, ab} = {ε}.

Оказывается, что каждый язык, содержащий пустую строку, имеет обрат-
ный язык относительно операции GF (2)-shuffle, и обратный язык равен себе.

Теорема 1. Для любого языка L ⊆ Σ∗, такого что ε ∈ L, верно, что
L ∃○ L = {ε}. Для любых двух различных языков K,L ∈ Σ∗ верно, что
K ∃○ L 6= {ε}.

Элементарные алгебраические свойства операции GF (2)-shuffle можно вы-
вести из определения 2 и теоремы 1. Эти свойства кратко описаны ниже и
могут быть установлены прямой проверкой.



116 Сажнева Е.А.

Утверждение 1. Для любого алфавита Σ множество всех языков над
этим алфавитом, содержащих пустую строку, образует абелеву группу
с бинарной операцией GF (2)-shuffle.
Утверждение 2. Для каждого алфавита Σ множество всех языков 2Σ∗ над
алфавитом Σ образует коммутативное кольцо с операцией симметрической
разности как суммой и с операцией GF (2)-shuffle как произведением.

GF (2)-shuffle над регулярными языками

Важный вопрос для введенной операции на регулярных языках— сохране-
ние класса регулярных языков и сложность описания этой операций, то есть
насколько большой автомат необходим для представления операции на ко-
нечных автоматах заданного размера.

Детерминированный конечный автомат (ДКА) определяется как пятерка
A = (Σ, Q, q0, δ, F ), где: Σ — входной алфавит; Q—конечное непустое множе-
ство состояний; q0 ∈ Q—начальное состояние; δ : Q×Σ→ Q—функция пере-
хода; F ⊆ Q—множество принимающих состояний. Вычисление A на строке
w = a1 . . . an, где a1, . . . , an ∈ Σ, является однозначно определенной последо-
вательностью состояний r0, . . . , rn ∈ Q, таких что r0 = q0 и ri = δ(ri−1, ai)
для i ∈ {1, . . . , n}. Если rn ∈ F , говорят, что ДКА принимает строку w.
Язык, распознаваемый ДКА, обозначаемый L(A), представляет собой набор
всех строк, которые принимает автомат A. В следующей теореме показано,
что GF (2)-shuffle сохраняет класс регулярных языков, и утверждается, что
автомат, распознающий GF (2)-shuffle двух регулярных языков, может быть
эффективно построен.
Теорема 2. Для любых двух ДКА A = (Σ, P, p0, η, E) и B = (Σ, Q, q0, δ, F ),
таких что |P | = m и |Q| = n, GF (2)-shuffle L(A) и L(B) распознаётся ДКА
C со множеством состояний 2P×Q, где:
— начальное состояние равно (p0, q0);
— функция переходов π : (2P×Q) × Σ → 2P×Q определяется для каждого

состояния S = { (p, q) | p ∈ P, q ∈ Q } и символа a ∈ Σ следующим
образом:
π(S, a) = S ′ = { (p′, q′) | число состояний (p, q) ∈ S, где p ∈ P, q ∈ Q,
таких что p′ = η(p, a) и q′ = q XOR q′ = δ(q, a) и p′ = p, нечетно };

— множество принимающих состояний— F ′ =
{
S
∣∣ |S∩(E×F )| нечетно

}
.
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Введение

Пусть G— абелева группа порядка n, а k > 2 —целое число, и A1, . . . , Ak —
непустые подмножества G. Набор (A1, . . . , Ak) называется k-свободным от
сумм (сокращенно k-НСС), если не существует набора

(a1, . . . , ak) ∈ A1 × · · · × Ak,

являющегося решением уравнения

x1 + · · ·+ xk = 0. (1)

Семейство k-НСС в G обозначим через Sk(G). Положим

%k(G) = max
(A1,...,Ak)∈Sk(G)

(|A1|+ · · ·+ |Ak|).

В работе [1] была доказана следующая теорема

Теорема. Пусть G— абелева группа порядка n, а k—натуральное число,
k > 3. Тогда справедливо равенство

log |Sk(G)| = %k(G) + ō(n)

при n→∞.

Пусть (A1, . . . , Ak) —набор, k-свободный от сумм, в группе G. Набор
(A1, . . . , Ak) назовем максимальным по мощности, если он максимальный
по %k(G), и максимальным по включению, если для любых i ∈ {1, . . . , k} и
x ∈ G \ Ai, набор

(A1, . . . , Ai−1, Ai ∪ {x}, Ai+1, . . . , Ak)

не является k-свободным от сумм в группе G.
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В этой работе рассматриваются следующие задачи.
Задача 1. Нахождение %k(G).
Задача 2. Определение структуры максимального по мощности (по вклю-
чению) k-НСС.

Нахождение %k(G)

Теорема 1. Для любого простого числа p справедливо равенство
%k(Zp) = p+ k − 2.

Теорема 2. Пусть G— абелева группа порядка n и экспоненты ν. Тогда

n+
n

p1
(k − 2) = max

d|ν

(n
d

(d+ k − 2)
)
6 %k(G) 6 max

d|n

(n
d

(d+ k − 2)
)

= n+
n

p2
(k − 2),

где p1 —наименьший простой делитель ν, а p2 —наименьший простой де-
литель n.

Есть предпосылки предположить, что верна следующая оценка.

Утверждение. Пусть G— абелева группа порядка n и экспоненты ν. Тогда

%k(G) = n+
n

p
(k − 2),

где p—наименьший простой делитель ν.

Теорема 3. Для любого n справедливо равенство

%k(Zn) = n+
n

p

(
k − 2

)
,

где p—наименьший делитель n.

Теорема 4. Пусть G— абелева группа порядка n и экспоненты ν. Тогда

%k(G) > max
d|ν

(n
d
%k(Zd)

)
.

О структуре максимального по мощности набора, k-свободного от
сумм, в циклической группе

Пусть A—подмножество абелевой группыG. Через A обозначаем дополнение
подмножества A в абелевой группе G, то есть A = G \ A.

Теорема 5. Пусть k > 2, Zp—циклическая группа простого порядка и
(A1, . . . , Ak) —максимальный по мощности набор, k-свободный от сумм, в
Zp. Тогда каждое множество набора с точностью до изоморфизма есть
одно из следующих:
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i) |Ai| = 1;
ii) Ai = −(A1 + · · ·+ Ai−1 + Ai+1 + · · ·+ Ak);
iii) Ai— арифметическая прогрессия с разностью 1;
где i = 1, . . . , k.

Теорема 6. Пусть k > 2, p—наименьший простой делитель натурального
числа n, H —подгруппа группы Zn порядка n/p и (A1, . . . , Ak) —максималь-
ный по мощности набор, k-свободный от сумм, в Zn. Тогда каждое множе-
ство этого набора с точностью до изоморфизма есть одно из следующих:
i) |Ai| = n/p, то есть Ai— смежный класс Zn по подгруппе H;
ii) Ai— объединение смежных классов Zn по подгруппе H такoе, что для

множества представителей смежных классов как подмножества цик-
лической группы Zp справедливо соотношение

Ai/H = −(A1/H + · · ·+ Ai−1/H + Ai+1/H + · · ·+ Ak/H);

iii) Ai— объединение смежных классов Zn по подгруппе H такoе, что мно-
жество представителей смежных классов как подмножество цикличе-
ской группы Zp является арифметической прогрессией с разностью 1;

где i = 1, . . . , k.

Теорема 7. Пусть G— абелева группа порядка n и (A1, . . . , Ak) —макси-
мальный по включению набор, k-свободный от сумм, в группе G, удовле-
творяющий данному условию:

|A1|+ · · ·+ |Ak| > n+ k − 2.

Тогда существует подгруппа H группы G такая, что:
i) Ai +H = Ai, где i = 1, . . . , k;
ii) G/H —циклическая группа;
iii) (A1/H, . . . , Ak/H) —максимальный по включению набор, k-свободный от

сумм, в фактор-группе G/H.

Теорема 8. Если в абелевой группе G существует максимальный по вклю-
чению набор, k-свободный от сумм, с мощностью k, то группа G цикличе-
ская.

Автор выражает благодарность профессору Сапоженко А.А. за постановку
задачи.
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Универсальные функции для пар линейных
Седова Анна Сергеевна
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Введение

Понятие универсальной функции было введено в работе [1]. Далее были ис-
следованы задачи о существовании, мощности области определения и пред-
ставления в простом виде универсальных функций для различных классов.
В настоящей работе вводится понятие универсальной функции для пары ли-
нейных функций и рассматривается задача о ее существовании.

Постановка

Далее везде будем рассматривать булевы функции размерности n. Для функ-
ций (g0, g0) не существует точек, на которых они совпадают. Пару функций
(g0, g0), будем называть недопустимой.

Определение. Функция f(x1, . . . , xn) порождает допустимую пару линей-
ных функций g0(x1, . . . , xn) и g1(x1, . . . , xn), если g0 ∈ L ∩ T0, g1 ∈ L ∩ T0 и
можно предъявить множество точек X = {x1, . . . ,xn}, такое, что g0 и g1

являются единственными функциями из соответствующих классов, что
для любого x ∈ X выполняются соотношения g0(x) = f(x), g1(x) = f(x).

Заметим, что если f не порождает пару (g0, g1), то существует па-
ра допустимых функций (g′0, g

′
1), такая, что не существует точки x:

f(x) = g0(x) = g1(x) и при этом f(x) 6= g′0(x) или f(x) 6= g′1(x).

Определение. Функция f(x1, . . . , xn) называется универсальной функцией
для пар линейных функций, если она порождает любую пару допустимых
линейных функций.

Основная часть

Теорема 1. Универсальная функция для пар функций существует
при n > 7.

Доказательство. Пусть f(x1, . . . , xn) порождает пару функций g0 ∈ L ∩ T0

и g1 ∈ L ∩ T0. При этом g0 и g1 совпадают на половине куба.
Рассмотрим две пары допустимых функций: (g0, g1) и (g′0, g

′
1). Обозначим

через T часть пространства, где совпадают функции g0 и g1, а через T ′—
часть пространства, где совпадают функции g′0 и g′1. T и T ′ имеют размер
полпространства, то есть 2n−1. При этом:
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1. T 6= T ′, так как только g0 и g1 совпадают на T .
2. T 6= T ′ ввиду значений функций в точке (0, . . . , 0).
3. T ∩ T ′ и T/T ′ имеют размерность четверти пространства, то есть 2n−2.

Будем использовать вероятностный метод в комбинаторике [2]. Рассмотрим
равномерное распределение булевых функций. Пусть P (A) — вероятность то-
го, что универсальная функция для пар функций существует. Оценим сверху
вероятность дополнительного события A—любая f(x1, . . . , xn) не является
универсальной функцией.

Для каждой точки из множества T/T ′ вероятность для случайной функции
f не отличить пару (g0, g1) от пары (g′0, g

′
1) равна 1

2 . Число всевозможных
допустимых пар функций (g0, g1) — (2n(2n−1)), а пар (g′0, g

′
1) — (2n(2n−1)−1).

Учитывая, что вероятность объединения не превосходит суммы вероятностей,
получим:

P (A) 6
1

22n−2
× (2n(2n − 1))(2n(2n − 1)− 1) 6 24n−2n−2.

Функция 4n− 2n−2 убывает при n > 7. При n = 7 получим: P (A) 6 2−4 < 1.
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О замкнутом классе полиномиальных
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Пусть k > 2 —целое число, Ek = {0, 1, . . . , k − 1}. Функцией k-значной
логики f местности n называем отображение f : En

k → Ek, n > 1. Множество
всех функций k-значной логики обозначаем Pk. Рассматриваем представле-
ние функций k-значной логики полиномами по модулю k. Функцию из Pk на-
зываем полиномиальной, если ее можно представить каким-то полиномом над
кольцом Zk вычетов по модулю k. Множество всех полиномиальных функций
k-значной логики обозначаем Polk. Известно, что Polk = Pk тогда и только
тогда, когда k—простое число [1, 2]. В случае, когда k— составное число,
появляется вопрос о критериях полиномиальности функций из Pk. К насто-
ящему времени разными авторами найден ряд таких критериев, основанных
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на различных подходах. В частности, в [3] получены критерии полиномиаль-
ности, некоторые из них затем уточнены в [4, 5].

Множество Pk рассматриваем как функциональную систему с операция-
ми суперпозиции [1]. Если A ⊆ Pk, то множество A называется замкнутым
классом, если оно замкнуто относительно суперпозиции. Известно, что при
k > 2 множество Polk является замкнутым классом. Отношением (предика-
том) местности r на множестве Ek называем подмножество множества Er

k,
r > 1. Множество всех отношений на Ek обозначаем Rk. Пусть f ∈ Pk и
ρ ∈ Rk. Говорят, что функция f сохраняет отношение ρ, если для любых
столбцов γ1, . . . , γn ∈ ρ верно f(γ1, . . . , γn) ∈ ρ, где f(γ1, . . . , γn) = δ ∈ Er

k и
δi = f(γ1

i , . . . , γ
n
i ) для всех i = 1, . . . , r. Множество всех функций из Pk, со-

храняющих отношение ρ, обозначаем Ak(ρ). Известно, что для любого ρ ∈ Rk

множество Ak(ρ) является замкнутым классом (см., например, [2]).
В [4, 5] автором настоящей работы начато исследование описания замкну-

того класса Polk посредством отношений и получены эти описания для ряда
значений числа k. Приведем здесь эти теоремы из [4, 5].

Теорема 1 ([4, 5]). Пусть p—простое число. Класс Polp2 является множе-
ством всех функций из Pp2, сохраняющих отношение ρp,2,2, где

ρp,2,2 =




a
a+ bp
a+ cp

a+ (b+ c)p

 | a, b, c ∈ Ep2

 .

Теорема 2 ([5]). Пусть p—простое число, p 6= 2. Класс Polp2 является
множеством всех функций из Pp2, сохраняющих отношение ρp,2,1, где

ρp,2,1 =


 a

a+ bp
a+ 2bp

 | a, b ∈ Ep2

 .

Теорема 3 ([4]). Пусть p—простое число, 1 6 m 6 p. Класс Polpm явля-
ется множеством всех функций из Ppm, сохраняющих отношение ρp,m,m,
где

ρp,m,m =
{
γb ∈ E2m

pm | b ∈ E2m
pm
}
,

γbr =
∑

j∈Em2 ,j6r
bj · p|j| для всех r ∈ Em

2 .
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Пример 1. Пусть k = p3, где p—простое число и p 6= 2. Тогда
Polp3 = Ap3(ρp,3,3), где

ρp,3,3 =





a
a+ b1p
a+ b2p
a+ b3p

a+ (b1 + b2)p+ c3p
2

a+ (b1 + b3)p+ c2p
2

a+ (b2 + b3)p+ c1p
2

a+ (b1 + b2 + b3)p+ (c1 + c2 + c3)p
2


| a, bi, ci ∈ Ep3


.

В настоящей работе уточнен еще один критерий из [3]. На основе по-
лученного уточнения найдено полное описание замкнутого класса Polk по-
средством отношений. А именно, для каждого простого числа p и каждого
числа m > 1 найдены в явном виде отношения, описывающие замкнутый
класс Polpm (см. теорему 4).

Сначала введем необходимые определения. Пусть p—простое число,
m > 1. Пусть N обозначает множество натуральных чисел с нулем. Если
s ∈ N , то положим cp,m(s) = t, где t ∈ N — такое наибольшее число из чи-
сел 0, 1, . . . ,m − 1,m, что факториал s! числа s делится нацело на pt. Если

s = (s1, . . . , sn) ∈ Nn, n > 1, то положим cp,m(s) = min(m,
n∑
i=1

cp,m(si)). Число

cp,m(s) назовем составной характеристикой числа s ∈ N или набора s ∈ Nn по
отношению к простому числу p и числуm. Если s ∈ Nn, то sp = (s1p, . . . , sp).
Набор s ∈ Nn назовем граничным (для свойства полиномиальности по моду-
лю pm), если cp,m(sp) = m, но для любого такого набора t ∈ Nn, что t < s,
верно cp,m(tp) < m. Обозначим через Γp,m(n) множество всех граничных на-
боров длины n. Если s ∈ Nn, то положим T̂ (s) = {r ∈ Nn | r > s}. Далее

положим Np,m(n) = Nn\

( ⋃
s∈Γp,m(n)

T̂ (s)

)
. Множество Np,m(n) назовем множе-

ством всех значащих наборов для свойства полиномиальности по модулю pm.
ПустьNp,m = Np,m(m) и np,m = |Np,m|. Наборы изNn сравниваем поразрядно.
Биномиальный коэффициент из r по j обозначаем Cj

r , r, j ∈ N .

Теорема 4. Пусть p—простое число, m > 1. Класс Polpm является мно-
жеством всех функций из Ppm, сохраняющих отношение ρp,m,m, где

ρp,m,m =
{
γb ∈ Enp,m

pm | b ∈ Enp,m
pm
}
,

для любого r ∈ Np,m верно γbr =
∑

j∈Np,m,j6r
bj · Cj1

r1
· . . . · Cjm

rm
· pcp,m(jp).
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Пример 2. Пусть k = 8 = 23. Тогда Pol8 = A8(ρ2,3,3), где

ρ2,3,3 =





a
a+ 2b1

a+ 2b2

a+ 2b3

a+ 4b1

a+ 4b2

a+ 4b3

a+ 2(b1 + b2) + 4c3

a+ 2(b1 + b3) + 4c2

a+ 2(b2 + b3) + 4c1

a+ 2(b1 + b2 + b3) + 4(c1 + c2 + c3)


| a, bi, ci ∈ E8



.
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Нижние оценки сложности линейных
операторов над GF (2)

Сергеев Игорь Сергеевич
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Изучается сложность реализации линейных операторов над полем GF (2)
схемами из функциональных элементов сложения (аддитивными схемами).
Сложность оператора с матрицей A обозначается через L(A) — эта величина
сокращенно называется сложностью матрицы A.
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Известно, что почти все булевы матрицы размера n× n имеют сложность
асимптотически n2/(2 log2 n) (фактически доказано в [1]). Однако трудно ука-
зать конкретную матрицу высокой сложности.

Для близких моделей аддитивных схем с операциями целочисленного сло-
жения или дизъюнкции примеры матриц практически экстремальной слож-
ности n2−o(1) построены в [2, 3]. Доказательство нелинейной нижней оценки
L(A) = ω(n) для явно заданной матрицы размера n × n является известной
открытой проблемой.

По-видимому, самые высокие известные нижние оценки сложности кон-
кретно заданных (последовательностей) матриц размера n × n имели вели-
чину 3n − o(n). Обобщая один из таких примеров, построенный Чашкиным
в [4], мы укажем матрицу с нижней оценкой сложности 5n− o(n).

Далее через GF (2)m×n обозначается множество булевых матриц размера
m× n (m строк, n столбцов). Через A1 �A2 обозначим прямую сумму мат-

риц A1 и A2, а именно A1 � A2 =

[
A1 0
0 A2

]
.

Сначала расширим модель вычислений. Рассмотрим вычисление операто-
ра AX (где X — вектор переменных) аддитивными схемами, которые имеют
произвольный набор Y дополнительных переменных в качестве входов. Ес-
ли элемент такой расширенной схемы вычисляет сумму‡ 〈a,X〉 + 〈b, Y 〉, то
вектор b назовем типом элемента. Приведенной сложностью схемы назовем
разность между общим числом элементов и числом типов элементов в схеме
с весом не менее 2. Через L∗(A) обозначим минимум приведенной сложности
расширенных схем, вычисляющих матрицу A. Очевидно, всегда выполнено
L∗(A) 6 L(A). Несложно доказывается

Лемма 1. Для любой пары булевых матриц A1, A2 справедливо

L∗(A1 � A2) = L∗(A1) + L∗(A2), L(A1 � A2) > L(A1) + L∗(A2).

К сожалению, высокие нижние оценки при помощи меры L∗ получить нель-
зя. Приведенная сложность всегда не более чем линейна.

Теорема 1. Для любой матрицы A ∈ GF (2)m×n выполнено L∗(A) 6 2m+n.

В отличие от меры L∗, исходная мера сложности L, вообще говоря, не об-
ладает свойством аддитивности относительно операции прямой суммы. Это
доказывает пример из работы [5]. Он опирается на простое наблюдение. Если
B ∈ GF (2)n×n, то вычисление матрицы A = B� · · ·�B (всего n слагаемых)
соответствует умножению B ·X матрицы B на матрицу переменных X. Во-
обще, используя известные результаты о быстром умножении матриц, легко

‡Через 〈·, ·〉 обозначается скалярное произведение векторов над GF (2).
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оценить возможную экономию сложности при вычислении прямых сумм:

ρ = sup
L(A)>0

L(A) + L(B)

L(A�B)
= 2.

Рассмотренный выше пример позволяет установить связь между мерой
сложности L∗ и сложностью билинейных алгоритмов умножения матриц. На-
помним, что билинейный алгоритм — это схема в базисе операций умноже-
ния и сложения, причем для каждого элемента умножения одним аргумен-
том является линейная комбинация коэффициентов одной перемножаемой
матрицы, а другим— линейная комбинация коэффициентов второй матри-
цы. Пусть bil+(n), bil∗(n), bil(n) означают соответственно минимальное число
аддитивных операций, мультипликативных операций и общее число опера-
ций в билинейном алгоритме умножения матриц из GF (2)n×n. Через ν(B)
обозначается вес булевой матрицы B.

Лемма 2. Для любой матрицы B ∈ GF (2)n×n справедливо

bil+(n) > nL∗(B) + n2 − ν(B)−O(n).

Индексом независимости матрицы B назовем максимальное число k, та-
кое что любые k строк из B линейно независимы над GF (2). Обозначим эту
величину через ind(B).

С опорой на комбинаторный результат [6] (оценка границы Мура для нере-
гулярных графов) доказывается

Теорема 2. Пусть m 6 n, матрица B ∈ GF (2)n×m не имеет строк веса 1
и ind(B) > 2k + 2 > 6. Тогда

L∗(B) > n+
2k − 2

2k + 1
· n

k
k+1 −m.

Примеры матриц с высоким индексом независимости предоставляет теория
линейных кодов. Известно, что если линейный код с проверочной матрицейH
имеет расстояние d, то ind(H>) = d− 1.

Например, из строк вида (α, α2, . . . , αs), где α—различные элементы по-
ля GF (2p), записанные векторами коэффициентов в некотором базисе над
GF (2), можно составить матрицу с индексом независимости не менее s. Пола-
гая p = dlog2 ne, s ∼

√
n и m = ps, составим матрицу U из n−m таких строк.

Используя теорему 2, лемму 1 и известное соотношение L(B)+m = L(B>)+n,
справедливое для любой матрицы B размераm×n без нулевых строк и столб-
цов (принцип транспонирования), получаем

Следствие 1. Для матрицы A = U> � U ∈ GF (2)n×n выполнено
L(A) > 5n− o(n).
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Замечая, что для единичного вектора 11×n длины n имеет место
L∗(11×n) = L(11×n) = n− 1, также получаем

Следствие 2. Для матрицы A = 11×(n−m)�U ∈ GF (2)(n−m+1)×n справедливо
L∗(A) > 3n− o(n).

В свете теоремы 1 матрица A имеет асимптотически максимально воз-
можную для (почти) квадратных матриц приведенную сложность. Ис-
пользуя матрицу из следствия 2, с помощью леммы 2 и соотношения
bil∗(n) > (3−o(1))n2 [7] извлекаем оценки сложности билинейных алгоритмов
умножения матриц над GF (2).

Следствие 3. bil+(n) > (4− o(1))n2, bil(n) > (7− o(1))n2.

О существовании других нетривиальных нижних оценок аддитивной слож-
ности умножения матриц при n→∞ автору неизвестно.
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решении задачи регрессии координат
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Аннотация

В данной работе рассмотрено поведение нейронных сетей [1] (в частности,
свёрточных [2]) при решении задачи регрессии координат [3]. Также в [3] по-
казано, что свёрточные нейронные сети плохо справляются с решением дан-
ной задачи. Постановка задачи регрессии координат: дано входное изображе-
ние, содержащее один белый пиксель; требуется вывести его координаты. Для
этой задачи предполагаем, что набор данных имеет следующую структуру:
двумерный массив, заполненный числами a и содержащий ровно одно число
b (a не равно b). Эти числа представляют черные и белый пиксели соответ-
ственно. Основной результат состоит в том, что любую детерминированную
нейронную сеть, которая решает данную задачу с некоторой точностью, мож-
но выразить через однослойную линейную сеть, состоящую из двух нейронов
(для вывода координат x, y).

Основные результаты

Утверждение 1. Для задачи регрессии координат и для однослойной свер-
точной нейронной сети, которая решает задачу с некоторой точностью,
существует однослойная сверточная сеть с тождественными функциями
активации, которая повторяет выход изначальной сети.

Утверждение 2. Для задачи регрессии координат и для нейронной се-
ти, состоящей из сверточных слоев, которая решает задачу с некоторой
точностью, существует однослойная сверточная сеть с тождественными
функциями активации, которая повторяет выход изначальной сети.

Теорема 1. Для задачи регрессии координат и для любой детерминирован-
ной нейронной сети, которая решает задачу с некоторой точностью, су-
ществует однослойная нейронная сеть, состоящая из двух нейронов (один
выдает координаты x, второй y), которая повторяет выход изначальной
сети, и имеет тождественные функции активации.

Следствие. Для нейронной сети из теоремы 1 при решении задачи регрес-
сии координат справедлива следующая оценка изменения выходных данных
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при изменении входных:

||∆output|| 6
√

2(a− b)2 · ||A||,
где || · ||—любая векторная норма и A—матрица, размерность которой
2×n, n ∈ N. Строки данной матрицы заполняются весами нейронов, а
именно, первая и вторая строка заполняются весами первого и второго
нейронов соответственно (нейронов сети из теоремы 1). Если вектор ве-
сов одного нейрона меньше вектора весов другого, дополним первый нулями,
чтобы их размерность совпадала.

Автор выражает благодарность канд. физ.-мат. наук Иванову И.Е. за по-
становку задачи.
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Об одном семействе неявно предполных
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Введение

В 70-х годах прошлого века А.В. Кузнецов ввел понятия параметрической и
неявной выразимости [1], которые обобщают понятие выразимости по супер-
позиции. В той же работе Кузнецов описал множество всех параметрически
замкнутых классов.

Позднее О.М. Касим-Заде доказал, что в двузначной логике оператор неяв-
ной выразимости эквивалентен оператору параметрического замыкания [2], и
тем самым получил описание множества всех неявных расширений в двузнач-
ной логике, из которого можно непосредственно получить множество всех
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неявно предполных (т. е. максимальных неполных) классов. Описание всех
неявно предполных классов в трехзначной логике получено автором (см., на-
пример, [3]).

В работе рассматривается обобщение одного из семейств неявно предпол-
ных классов в трехзначной логике. Отметим, что некоторые из этих классов
рассматривались Е.А. Ореховой [4].

Основные определения

Обозначим через Ek множество {0, 1, . . . , k − 1}, через Pk —множество всех
функций k-значной логики, а через TA—множество всех функций, сохраня-
ющих подмножество A.

Говорят, что функция f(x1, . . . , xn) ∈ Pk неявно выразима над множеством
функций F ⊆ Pk, если найдутся такие Ai, Bi ∈ [F ∪ {x}], что система урав-
нений  A1(x1, . . . , xn, z) = B1(x1, . . . , xn, z),

. . .
Am(x1, . . . , xn, z) = Bm(x1, . . . , xn, z)

эквивалентна уравнению z = f(x1, . . . , xn).
Пусть f(x1, . . . , xn) ∈ TEk ⊂ Pl. Через f̂(x1, . . . , xn) обозначим такую функ-

цию в Pk, что для любого набора α̃ ∈ En
k выполнено f̂(α̃) = f(α̃). Такую

функцию будем называть k-ограничением функции f .
Пусть W ⊆ Pk. Через ΣW будем обозначать множество всех функций в

TEk ⊂ Pl, чье k-ограничение принадлежит W .

Результаты

Часть изложенных здесь результатов была опубликована в статье [5] для
случая трехзначной логики.

Устройство классов ΣW очень схоже с устройством классов W .

Утверждение 1. Пусть f(x̃) ∈ TEk ⊂ Pl и f̂ — ее k-ограничение. Пусть,
кроме того, W ⊆ Pk — замкнутый класс, содержащий селекторную функ-
цию и [W ∪ {f̂}] = W0. Тогда [ΣW ∪ {f}] = ΣW0

.

Неявная полнота классов вида ΣW в точности определяется неявной пол-
нотой класса W .

Теорема 1. Класс функций W ⊆ Pk неявно полон тогда и только тогда,
когда полон класс ΣW ⊆ Pl.

Однако с неявной предполнотой классов дела обстоят не столь просто.
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Утверждение 2. Пусть класс W ⊆ Pk неявно предполон и не сохраняет
ни одно собственное подмножество Ek. Тогда класс ΣW будет неявно пред-
полным для любого l > k.

Утверждение 3. Пусть класс W ⊆ Pk неявно предполон и сохраняет под-
множество Em ⊂ Ek. Тогда если m-ограничение класса W неявно не полно
в Pm, то класс ΣW не будет неявно предполным для всех l > k.

Таким образом, если класс W можно представить в виде ΣW ′ для некото-
рого класса W ′, то класс ΣW не будет неявно предполным.

Работа выполнена при финансовой поддержке Минобрнауки России в рам-
ках реализации программы Московского центра фундаментальной и при-
кладной математики по соглашению № 075-15-2022-284.
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О числе разбиений на большие подкубы
Таранников Юрий Валерьевич
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Пусть q,m, n—целые числа, q > 2, n > m > 0. Подкубом размерности
n −m в Znq называется такое подмножество наборов Znq , у которого некото-
рые m компонент фиксированы, а каждая из остальных n − m компонент
пробегает всевозможные значения из Zq.

При разбиении на подкубы каждый набор из Znq должен попасть ровно в
один подкуб. Разбиение на подкубы называется A-примитивным, если каж-
дая компонента зафиксирована хотя бы в одном из подкубов разбиения.
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Наиболее известна задача о разбиении на подкубы малой размерности. Так,
если все подкубы разбиения булева куба имеют размерность 1, то эти подку-
бы являются ребрами, а разбиения называются совершенными паросочета-
ниями, и задача об их числе хорошо известна. В [1] рассматриваются задачи
разбиения булева куба на подкубы, преимущественно малых размерностей,
которые в том числе могут быть разными в составе одного разбиения.

Разбиения на подкубы (не обязательно одной размерности) с дополнитель-
ным условием неприводимости исследуются в [2].

Главным предметом изучения в [3] были разбиения на аффинные подпро-
странства, а для разбиений на подкубы, являющихся частным случаем раз-
биений на аффинные подпространства, доказаны следующие утверждения,
ориентированные на разбиения на подкубы одинаковой большой размерно-
сти.

Теорема 1 ([3]). Пусть q > 2. Для любого натурального m существует
наименьшее натуральное N = N coord

q (m), что при n > N не существует
А-примитивных разбиений Znq на qm подкубов размерности n−m.

Теорема 2 ([3]). Справедлива формула

ccoord
q (n,m) =

N coord
q (m)∑
h=m

(
n

h

)
ccoord∗
q (h,m), (1)

где: ccoord
q (n,m) —число различных неупорядоченных разбиений Znq на qm под-

кубов размерности n−m; ccoord∗
q (n,m) —число различных неупорядоченных

А-примитивных разбиений Znq на qm подкубов размерности n − m;
(
n
h

)
—

обычный биномиальный коэффициент.

Теорема 3 ([3]). Пусть q и m фиксированы, n → ∞. Тогда имеет место
асимптотика

ccoord
q (n,m) ∼ C ′nN

coord
q (m),

где C ′ = ccoord∗q (N coord
q (m),m)

N coord
q (m)!

.

Также в [3] получены оценки qm−1
q−1 6 N coord

q (m) 6 m · qm−1 и установлены
точные значения N coord

q (2) = q + 1.

Новые результаты

Теорема 4. Имеют место точные значения N coord
2 (4) = 15, N coord

2 (5) = 31,
N coord
q (3) = q2 + q + 1, ccoord∗

2 (15, 4) = 15!, ccoord∗
2 (31, 5) = 31!,

ccoord∗
q (q2 + q + 1, 3) = (q2 + q + 1)!.
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Идея доказательства. Звездным паттерном подкуба называется набор дли-
ны n над Zq ∪ {∗}, где элементы Z соответствуют зафиксированным компо-
нентам, в то время как ∗ соответствует «свободной» компоненте.

Например, набор (0, ∗, 1, 0, ∗) является звездным паттерном следующего
подкуба в Z5

2:
{ (0, 0, 1, 0, 0),

(0, 0, 1, 0, 1),
(0, 1, 1, 0, 0),
(0, 1, 1, 0, 1) }.

Матрица, по строкам которой выписаны звездные паттерны всех подкубов
разбиения, называется звездной матрицей разбиения.

Например, звездная матрица
0, 0, ∗
0, 1, ∗
1, ∗, 0
1, ∗, 1


задает разбиение Z3

2 на 22 подкубов размерности 3− 2 = 1 каждый.
Легко видеть, что разбиение Znq на qm подкубов одинаковой размерности

n−m задается звездной матрицей размера qm×n и является A-примитивным
тогда и только тогда, когда его звездная матрица не содержит столбца из
одних ∗.

Для установления значений, выписанных в формулировке теоремы, про-
изводится анализ звездных матриц размера qm × N coord

q (m), задающих А-
примитивное разбиение. Используются леммы, дадим формулировки наибо-
лее важных из них.

Лемма 1. В звездной матрице разбиения для любых двух строк найдется
столбец, имеющий в этих строках разные значения из Zq.

Указание к доказательству леммы 1. В противном случае можно заменить
звездочки в этих строках на числа так, что обе строки станут одинаковыми,
поэтому соответствующие подкубы пересекаются, чего быть не может.

Лемма 2. В звездной матрице разбиения на подкубы одинаковой размер-
ности в любом столбце все значения из Zq встречаются одинаковое число
раз.

Указание к доказательству леммы 2. Рассмотрим i-й столбец. Если неко-
торая строка звездной матрицы имеет ∗ в i-м столбце, то соответствующий
подкуб для каждого a ∈ Znq содержит в точности qn−m−1 наборов со значе-
нием a в i-м столбце. Если некоторая строка звездной матрицы имеет a в i-
м столбце, a ∈ Zq, то все qn−m наборов соответствующего подкуба имеют a
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в i-м столбце. Любой набор из Znq принадлежит в точности одному подкубу
разбиения. Отсюда вытекает утверждение леммы 2.

Ряд использованных лемм, формулировки которых мы здесь не приводим,
являются в том или ином виде обобщениями леммы 2 на совокупности более
чем из одного столбца.

Лемма 3. Пусть звездная матрица А-примитивного разбиения Znq на qn−m

подкубов размерности n−m каждый имеет размер qm×N coord
q (m) и содер-

жит столбец без звездочек. Тогда N coord
q (m) = qN coord

q (m− 1) + 1.

Из теорем 3 и 4 вытекают асимптотические формулы, выписанные в сле-
дующей теореме.

Теорема 5. При n→∞ справедливы асимптотики

ccoord
2 (n, 4) ∼ n15,

ccoord
2 (n, 5) ∼ n31,

ccoord
q (n, 3) ∼ nq

2+q+1.
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Вычисление некоторых характеристик всех
неизоморфных строгих порядков на

конечном множестве
Тензина Виктория Васильевна

Московский государственный университет имени М.В. Ломоносова; viktoria.tenzina@math.msu.ru

Бинарное отношение на множестве X — это любое подмножество множе-
ства X2 = X × X. Два отношения R1 ⊆ X × X и R2 ⊆ Y × Y называются
изоморфными, если существует биективное отображение f : X 7→ Y такое,
что (x, y) ∈ R1 ⇔ (f(x), f(y)) ∈ R2. Если R1 = R2 = R, то f называется
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автоморфизмом. Если R ⊆ X × X и отображение f : X 7→ X таково, что
(x, y) ∈ R⇒ (f(x), f(y)) ∈ R, то f — эндоморфизм.

Каждому отношению R можно сопоставить множество всех его автомор-
физмов, которое образует группу относительно композиции. Отношение изо-
морфизма разбивает все бинарные отношения заданного вида на классы эк-
вивалентности. Можно перечислять все отношения заданного вида, а можно
с точностью до изоморфизма, то есть учитывая только одного представителя
из заданного класса изоморфизма.

Перечисление всех отношений заданного вида или с точностью до изомор-
физма— хорошо известная задача (см. [1]). Например, этому посвящено мно-
го различных таблиц Слоэна (см. [2]). Нас будет интересовать число таких
отношений с тривиальной группой автоморфизмов, то есть состоящей только
из тождественного автоморфизма.

Теорема 1. Пусть X — конечное множество с n элементами и пусть K—
некоторое подмножество всех бинарных отношений на X такое, что если
ρ ∈ K, то и его изоморфный образ также из K. Обозначим через S число
всех бинарных отношений из K, а через N число всех неизоморфных би-
нарных отношений также из K. Тогда если A— количество неизоморфных
бинарных отношений из K с тривиальной группой автоморфизмов, то

2S

n!
−N 6 A 6

S −N
n!− 1

.

Каждому бинарному отношению R на конечном множестве из n элементов
можно сопоставить ориентированный граф G и матрицу смежности A сле-
дующим образом: граф состоит из n вершин, а из i в j есть ребро тогда и
только тогда, когда (i, j) ∈ R; матрица (aij) состоит из n строк и n столб-
цов, а элемент матрицы aij = 1 тогда и только тогда, когда (i, j) ∈ R, иначе
aij = 0.

Теорема 2. Доля асимметричных графов (чья группа автоморфизмов три-
виальна) среди всех неизоморфных простых графов с конечным числом вер-
шин n стремится к 1 при n −→∞.

Если бинарное отношение антирефлексивно, транзитивно и антисиммет-
рично, то оно называется строгим порядком. Частично упорядоченное мно-
жество называется линейным порядком, если все элементы в нём сравнимы.

Теорема 3. Любое строго упорядоченное конечное множество, обладающее
парой различных несравнимых элементов, можно нетождественно эндо-
морфно вложить в себя. Более того, образом такого эндоморфизма явля-
ется линейно упорядоченное подмножество.
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Так как каждому строго упорядоченному множеству можно взаимоодно-
значно сопоставить конечное топологическое пространство с тем же числом
элементов, то можно доказать следующее следствие.

Следствие. Пусть X — конечное топологическое T0-пространство. Тогда
существует непрерывное отображение f : X 7→ X такое, что индуциро-
ванная топология на f(X) совпадает с топологией линейного упорядочива-
ния.

Если отношение R является строгим порядком, то соответствующий граф
не имеет петель, любые две различные вершины i, j соединены не более чем
одним ребром, если есть рёбра из i в j и из j в k, то есть ребро из i в k, а для
элементов матрицы A = (aij) выполняется: 1) на главной диагонали нули,
2) aij + aji 6 1, 3) aij = 1 & ajk = 1⇒ aik = 1.

Пусть R— отношение строгого порядка. Так как граф такого отношения
ацикличен, то, воспользовавшись топологической сортировкой, можем пере-
упорядочить вершины графа так, чтобы булева матрица этого отношения
(a)ij (i, j ∈ {1, . . . , n}) была верхнетреугольной. Заметим, что на диагонали
этой матрицы стоят нули. Сопоставим каждому такому R двоичное число
an−1,nan−2,nan−2,n−1an−3,nan−3,n−1an−3,n−2 . . . a1,na1,n−1 . . . a1,2. Это код данной
матрицы. Перебирая всевозможные отношения, изоморфные заданному R,
с верхнетреугольными матрицами, найдём максимальный по значению код.
Назовём его максикодом, а соответствующие матрицы максикодными.

Лемма 1. Пусть для некоторого натурального n двоичный код
an−1,nan−2,nan−2,n−1an−3,nan−3,n−1an−3,n−2 . . . a1,na1,n−1 . . . a1,2 является мак-
сикодом для некоторого строгого порядка на множестве из n элементов.
Тогда an−1,nan−2,nan−2,n−1an−3,nan−3,n−1an−3,n−2 . . . a2,na2,n−1 . . . a2,3 (вычёр-
киваем младшие разряды в количестве n − 1) будет максикодом для
некоторого строгого порядка на множестве из n− 1 элементов. Обратно:
если к максикоду некоторого строгого порядка на множестве из n элемен-
тов приписать справа n нулей, то получится максикод для некоторого
строгого порядка на множестве из n+ 1 элементов.

Итак, если мы сможем перечислить все максикоды (назовём их нижними)
для множества всех строгих порядков на множестве из n элементов, то, беря
каждый максикод, преобразовав его в верхнетреугольную матрицу и припи-
сав сверху строчки из нулей и единиц, сохраняющие транзитивность, а самый
левый столбец заполнив нулями, получим множество кандидатов, содержа-
щее всевозможные максикодные матрицы размера n + 1 на n + 1. В итоге
получаем дерево максикодов.

На основе этой идеи создано программное обеспечение на языке C++,
создающее на каждом шаге для заданного n файл со списком максикодов
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и некоторыми его характеристиками (например, порядком группы автомор-
физмов для заданного максикода) на основе файла для n− 1. Сам алгоритм
позволяет распараллеливать вычисления на несколько компьютеров при об-
работке очередного файла, так как каждый максикод читаемого файла об-
рабатывается независимо. При проверке кандидата на то, что он является
максикодом, необходимо перечислить все топологические сортировки, сохра-
няющие соответствующий строгий порядок нижнего уровня, при этом про
половину кандидатов заведомо известно, что они не подходят. Перечисле-
ние всех топологических сортировок осуществляется на основе алгоритма
из [3] (с. 395). Если нижний максикод соответсвовал отношению с тривиаль-
ной группой автоморфизмов, то для некоторых кандидатов сразу очевидно,
что им соответствует максикод также с тривиальной группой автоморфизмов.
Заметим, что каждому автоморфизму соответствует некоторая топологиче-
ская сортировка, и поэтому все потенциальные автоморфизмы надо искать
только среди них.

По каждому такому файлу строится суммарная статистика для n. На-
зовём максикод тривиальным, если он соответствует строгому порядку с
тривиальной группой автоморфизмов, назовём связным, если соответству-
ющий граф связен. Например, для n = 11 получено: число всех максикодов
равно 46749427, тривиальных максикодов — 26554439, связных максикодов —
43944974, связных тривиальных— 25229911. Заметим, что сперва для неболь-
ших n были программно найдены все строгие порядки с тривиальной полу-
группой эндоморфизмов, а потом доказана теорема 3.
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О типах деревьев с размером приведённой
древесной колоды 2
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В работе рассматриваются неориентированные графы. Основные опреде-
ления следуют работам [1, 2].
Определение. Дерево — это связный граф, в котором нет циклов. Вершина
степени 1 в дереве называется висячей или листом.
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Определение. Подграф— граф, получающийся удалением произвольного
количества вершин и всех инцидентных с ними рёбер из исходного графа.

Определение. Максимальный подграф— подграф, получающийся удалени-
ем одной произвольной вершины и всех её рёбер.

Определение. Колодой графа называется список его максимальных подгра-
фов.

Определение. Максимальное поддерево дерева — дерево, получающееся
удалением одной произвольной висячей вершины.

Определение. Древесной колодой дерева будем называть список его макси-
мальных поддеревьев.

Определение. Приведённая древесная колода дерева — список попарно
неизоморфных максимальных поддеревьев дерева.

Один из традиционных вопросов, рассматриваемых в различных разделах
математики, касается связи между структурой объекта и его подструктура-
ми. Большой интерес представляет то, в какой мере структура объекта опре-
деляется структурой его частей. Особое значение имеет вопрос о том, можно
ли реконструировать объект по его частям.

Гипотеза реконструируемости Келли—Улама является одной из самых
знаменитых открытых проблем в теории графов.

Гипотеза (Келли—Улама о реконструируемости, 1945). Каждый неориен-
тированный граф на более чем двух вершинах реконструируем.

Для деревьев гипотеза Келли—Улама была доказана Келли [3]. Харари
и Палмер [4] доказали, что деревья реконструируемы и по максимальным
поддеревьям. Также было доказано, что деревья реконструируемы и по при-
ведённой древесной колоде [5].

В данной работе рассматривается задача описания деревьев с заданным
размером колоды. Ранее были получены некоторые результаты о деревьях с
размером приведённой древесной колоды 1 [6, 7]. В частности, в этих работах
были описаны два типа звёзд: центральные SC и бицентральные SB. Это
деревья, которые имеют размер приведённой древесной колоды 1, то есть все
их максимальные поддеревья попарно изоморфны.

Рассмотрим деревья с размером приведённой древесной колоды 2. Пусть
SC —какая-либо центральная звезда, а SB —какая-либо бицентральная звез-
да. Рассмотрим также цепь P отдельно, не рассматривая её в рамках SC и
SB. Введём операцию объединения графов ∪ такую, что звезды могут иметь
общий центр (то есть SC с SC — 1 вершину, SB с SB —две вершины) и,
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возможно, еще некоторое количество общих вершин, тогда как P может со-
единяться только за один из концов. Именно поэтому P не рассматривается
здесь как частный случай центральной или бицентральной звезды. Основной
результат работы:

Теорема. Дерево имеет приведённую древесную колоду размера 2 тогда и
только тогда, когда является одним из следующих четырёх типов дере-
вьев:
1. SC ∪ P , где цепь P крепится к вершине SC.
2. SC1 ∪ P ∪ SC2, где SC1 — какая либо центральная звезда, неизоморфная

другой произвольной центральной звезде SC2, причем цепь P крепит-
ся одним своим концом к вершине SC1, а другим своим концом— к вер-
шине SC2.

3. SC1 ∪SC2 c общим центром и, возможно, еще некоторым количеством
общих вершин, где SC1 — какая-либо центральная звезда, неизоморфная
другой произвольной центральной звезде SC2.

4. SB1∪SB2 с общим центром и, возможно, еще некоторым количеством
общих вершин, где SB1 — какая-либо бицентральная звезда, неизоморф-
ная другой произвольной бицентральной звезде SB2.

Пример дерева с приведённой древесной колодой размера 2 и типа 3 при-
веден на рисунке 1.

Рис. 1: SC3,2 U SC3,3,3.1
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О бесповторно замкнутых классах булевых
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Бесповторное замыкание для классов булевых функций упоминается в
работе Ф.И. Салимова [1], вопросы существования конечно порождающих
систем рассматривались в работах Р.Л. Схиртладзе, Ф.И. Салимова и
Р.М. Колпакова (см. [2–4], а также обзор в [5]).

Данная работа продолжает исследования автора [6] в области преобразо-
вания бернуллиевских случайных величин с рациональными вероятностями
посредством булевых функций и расширяет представление о бесповторно за-
мкнутых классах булевых функций и их свойствах с точки зрения задачи
конечного порождения рациональных вероятностей.

Пусть x— случайная величина, принимающая значение 1 и 0 c вероятно-
стью x̂ и 1−x̂ соответственно. Тогда распределение этой случайной величины
однозначно определяется значением x̂ ∈ [0; 1].
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Будем рассматривать преобразования, осуществляемые в результате под-
становки независимых в совокупности случайных величин со значениями 0 и
1 вместо переменных булевых функций. При этом в качестве преобразовате-
лей будем брать только булевы функции без фиктивных переменных.

Пусть задана булева функция f(x1, . . . , xn) : {0, 1}n → {0, 1}, тогда веро-
ятностная функция f̂(x̂1, . . . , x̂n) : [0; 1]n → [0; 1], индуцированная булевой
функцией f(x1, . . . , xn), определяется соотношением:

f̂(x̂1, . . . , x̂n) =
∑

(x1,...,xn):
f(x1,··· ,xn)=1

n∏
i=1

(xix̂i + (1− xi)(1− x̂i)).

Вероятностную функцию, индуцированную булевой функцией, можно так-
же записать в виде суммы одночленов с целыми коэффициентами следующим
образом:

f̂(x̂1, . . . , x̂n) =
∑

κ1,...,κn:∈{0;1}

ακ1...κnx̂
κ1
1 . . . x̂κnn ,

где x̂0
i = 1, x̂1

i = x̂i.
Тогда для простого p, p > 5, если:

1) α1...1 = 0, то функцию f̂ будем называть p-сократимой первого типа;

2) α1...1 = ptA, где t > 1, A ∈ Z, A mod p 6= 0, то функцию f̂ будем называть
p-сократимой второго типа;

3) α1...1 = A, где A ∈ Z, A mod p 6= 0, то функцию f̂ будем называть p-
несократимой.
Заметим, что p-сократимые функции первого типа будут p-сократимыми

для любого простого p > 5, а p-сократимые функции второго типа и p-
несократимые будут являться таковыми для одних p и не будут для дру-
гих. Например, индуцированная вероятностная функция f̂ с коэффициентом
α1...1 = 5 является 5-сократимой 2-го типа и r-несократимой для любого про-
стого r > 7, в частности, она является 7-несократимой. Оценки числа p-
сократимых функций приведены в [7].

Будем классифицировать булевы функции с точки зрения индуцирования
ими p-сократимых или p-несократимых вероятностных функций. Для каж-
дой из булевых функций после удаления фиктивных переменных построим
индуцированную функцию. И по тому, какая индуцированная функция по-
лучилась, отнесем исходную булеву функцию к одному из трех классов буле-
вых функций, которые будем обозначать как Z , Rp, Np—индуцирующие p-
сократимые функции первого типа, p-сократимые функции второго типа, p-
несократимые функции соответственно.

Будем называть бесповторным замыканием [F ]0 некоторого множества
булевых функций F множество всех булевых функций, представимых над F
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бесповторными формулами, т. е. формулами, в которых все переменные раз-
личны.

Теорема 1. Классы Z,Np,Rp бесповторно замкнуты.

Теорема 2. У классов булевых функций Rp и Np нет конечного базиса от-
носительно бесповторного замыкания.

Теорема 3. Для классов Rp, Np, Z справедливо : [Rp ∪ Np]0 = Rp ∪ Np,
[Np ∪ Z]0 = Np ∪ Z, [Rp ∪ Z]0 = Rp ∪ Z.

Теорема 4. Класс всех булевых функций P2 может быть разбит следую-
щим образом: P2 = Z tNp tRp t {0; 1} для p—простого, p > 5.

Таким образом, поскольку для простых q, r, для которых q 6= r и q, r > 5,
имеем, что Nq 6= Nr и Rq 6= Rr, то существует бесконечное множество раз-
биений всех булевых функций на непересекающиеся бесповторно замкнутые
классы булевых функций. Естественным образом возник вопрос, каково ме-
сто подобных классов в решетке замкнутых классов булевых функций. Ответ
на этот вопрос дают следующие теоремы. Заметим, что замкнутые классы
булевых функций являются также и бесповторно замкнутыми.

Теорема 5. Классы булевых функций K01, D01, L01 лежат в классе Np.

Теорема 6. Классы булевых функций MI∞1 ,MO∞0 , SM не лежат ни в од-
ном из классов Z,Np,Rp.

Ранее был получен результат, определяющий некоторые свойства, которы-
ми должно обладать множество булевых функций, индуцирующих p-несок-
ратимые функции, чтобы являться конечно порождающим [6]. При изучении
класса N5 удалось дополнить этот результат, что отражено в теореме 7.

Пусть задано множество булевых функций F и множество правильных
дробей G. Определим множество выразимых вероятностей VF (G) итера-
ционно. Положим V 1

F (G) = G. Для i > 1 положим V i+1
F (G) = V i

F (G)∪
∪{f̂(x̂1, . . . , x̂n)|f ∈ F, x̂j ∈ V i

F (G)}. Тогда VF (G) =
⋃∞
i=1 V

i
F (G).

Будем говорить, что для простого p > 5 множество булевых функций F
является конечно порождающим в Γ[p], если найдётся такое конечное мно-
жество G ⊂ Γ[p], что VF (G) = Γ[p].

Теорема 7. Класс булевых функций N5 является конечно порождающим в
Γ[5], а именно VN5

(A(52)) = Γ[5].
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В данной работе рассматривается квантовый алгоритм для задачи по-
иска кратчайшей общей суперстроки с возможными ошибками (SCSТk) с
точки зрения временной сложности. Формально задача ставится следую-
щим образом. Дан набор из n строк S = (s1, . . . , sn) суммарной длины
L = |s1| + · · · + |sn|, при этом максимальная длина d = max{|s1|, . . . , |sn|}.
Данный набор назовем словарем. А также дан целочисленный параметр k.
Необходимо составить строку t минимальной длины так, чтобы каждая стро-
ка из словаря была подстрокой строки t. Такую строку t назовем суперстро-
кой. Кроме того, мы разрешаем в одной из строк иметь не более чем k ошибок.
Формально, если ошибки допускаются в строке sj и она размещается в строке
t начиная с позиции i, то количество индексов r таких, что t[i+ r−1] 6= sj[r],
не должно превышать k.

Данная задача является вариацией задачи биоинформатики, а именно за-
дачи сборки длинной цепочки ДНК из коротких кусочков. На данный мо-
мент существуют две основные вариации задачи: De-Novo, в которой нет
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примера длинной цепочки ДНК, которую нужно собрать, и Reference-guide,
в которой такой пример существует. Задача построения кратчайшей об-
щей суперстроки является возможным решением для вариации De-Novo.
Квантовый алгоритм для этой задачи был предложен в работе [1]. Из-
вестно [2], что эта задача NP-полна и в классическом случае имеет слож-
ность O∗(n22n + L) = Õ(2n + L), где O∗ скрывает не только константный,
но и логарифмический множитель, Õ скрывает полиномиальный множи-
тель относительно n и логарифмический относительно L. В то же время,
для использования решения на практике необходимо разрешать допускать
ошибки в строках. В связи с этим можно считать вариант задачи, приве-
денный в данной работе, ближе к практическому применению. Квантовый
алгоритм, представленный в данной работе, имеет временную сложность
O∗(n7.51.728n + n3d+ n2dk + n4.5

√
L) = Õ(1.728n + dk +

√
L).

Алгоритм. Для строки u = (u1, . . . , u|u|) обозначим за |u| длину строки, за
u[i : j] = (ui, . . . , uj) —подстроку. Под сравнением строк мы подразумеваем
сравнение в лексикографическом порядке.

Алгоритм состоит из трех последовательных частей.
Часть 1. В рамках этой части вычисляются позиции возможных ошибок

для всех пар строк si и sj. Пусть `i = |si|, `j = |sj| и ` = min{`i, `j}. Рас-
смотрим всевозможные пересечения t ∈ {0, . . . , `} этих двух строк в случае,
если сначала идет si, затем sj. Для каждой тройки (i, j, t) рассмотрим строку
u = si ◦ sj[t+ 1, `j]. Вычислим список позиций r, являющихся ошибками, т. е.
sjr 6= u`i−t+r = si`i−t+r. В то же время если количество таких позиций более
k, мы сохраняем только первые k + 1 элементов, т. к. это уже означает, что
данное пересечение недопустимо в рамках задачи. Формально, вычисляется
список Ki,j,t = {r : sjr 6= si`i−t+r, 1 6 r 6 t}, но если длина списка больше k,
то сохраняются только первые k+ 1 элементов. Для этого мы рассматриваем
всевозможные тройки i, j ∈ {1, . . . ,m}, t ∈ {1, . . . , `}, а для зафиксированной
тройки находим ошибки за O(k log t), используя технику префиксных хешей
на базе вероятностного алгоритма отпечатков [3]. С ней можно ознакомить-
ся, к примеру, в работе [4]. В результате временная сложность этой части —
O(n2dk log d).
Часть 2. В рамках этой части мы вычисляем минимальную возможную

строку, которую можно составить из трех последовательных строк si, sj и
sb с пересечениями так, что в строке sj может быть не более k ошибок. При
этом используются уже вычисленные значения Ki,j,t. Пусть `i = |si|, `j = |sj|,
`b = |sb|, ` = min{`i, `j} и `′ = min{`j, `b}. Рассмотрим всевозможные пере-
сечения t ∈ {0, . . . , `} для строк si и sj, а также t′ ∈ {0, . . . , `′} для строк
sj и sb. Минимальная возможная результирующая строка достигается при
максимальной сумме t + t′. Для каждой тройки (i, j, b) вычислим соответ-
ствующую пару ki,j,b = (t, t′). Для пятерки (i, j, b, t, t′) имеется два случая. В
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первом случае t + t′ 6 `j. Следовательно, эти три строки составляют стро-
ку u = si ◦ sj[t + 1, `j − t′] ◦ sb. В этом случае количество ошибок равно
|Ki,j,t|+ |Kj,b,t′|. Во втором случае t+ t′ > `j. Тогда si и sb тоже пересекаются.
Другими словами, три строки составляют строку u = si ◦ sb[t′+ t− `j + 1, `b].
Тогда должно выполняться условие si[`i−(t′+t−`j)+1, `i] = sb[1, t′+t−`j, ],
т. к. ошибки могут быть только в строке sj, а строки si и sb должны пере-
секаться без ошибок. В этом случае количество ошибок равно сумме Ki,j,t и
числу ошибок при сопоставлении sj[t+ 1, `j] и sb[t′ + t− `j + 1, `b].

Для вычисления второй величины необходимо вычислить максимальный
индекс q элемента списка Kj,b,t′, который меньше или равен t + t′ − `j. Это
можно сделать с помощью бинарного поиска. Тогда второе значение в сумме
равно |Kj,b,t′| − q, а в целом количество ошибок равно |Ki,j,t| + |Kj,b,t′| − q.
Определим функцию fi,j,b(t, t

′), которая возвращает t + t′ в случае, если
si[`i − (t′ + t − `j) + 1, `i] = sb[1, t′ + t − `j] и |Ki,j,t| + |Kj,b,t′| − q 6 k, иначе
возвращает −1. Значение функции можно вычислить за O(log t′) из-за слож-
ности бинарного поиска. Равенство частей строк si и sb можно определить за
O(1) с помощью префиксных хешей. В результате нашей целью становится
вычисление максимума функции fi,j,b, при этом размер пространства поис-
ка не превышает d2. Это можно сделать при помощи квантового алгоритма
поиска максимума [5, 6] за время O(d(log d)2).
Часть 3. Эта часть алгоритма является основной. В рамках нее пере-

бираются все строки sj, в которых мы предполагаем встретить ошибку,
а также две строки si и sb, находящиеся слева и справа от нее. Пусть
(t, t′) = ki,j,b. Тогда вместо строк si, sj и sb будем рассматривать строку
u = si◦sj[t+1, `j−t′]◦sb в случае, если t+t′ 6 `j, и u = si◦sb[t′+t−`j+1, `b]
в случае, если t + t′ > `j, где `j = |sj|. Напомним, что u— строка с ми-
нимальной возможной длиной, составленной из si, sj и sb при условии, что
количество ошибок в sj не более k. Таким образом, у нас имееется новый
словарь S ′ = S\{si, sj, sb} ∪ {u} из n− 2 строк. Для данного словаря мы вы-
числяем кратчайшую общую суперстроку с помощью квантового алгоритма
из работы [1]. Определим функцию g(i, j, b), которая возвращает длину со-
ответствующей кратчайшей общей суперстроки для тройки si, sj и sb. Наша
цель — найти минимум этой функции при размере области поиска n3. Здесь
мы также можем воспользоваться квантовым алгоритмом поиска миниму-
ма [5, 6].

Теорема 1. Представленный квантовый алгоритм
решает задачу SCSTk с временной сложностью
O∗(n7.51.728n + n3d + n2dk + n4.5

√
L) = Õ(1.728n + dk +

√
L) и веро-

ятностью ошибки не более 0.3.
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В данной работе рассматривается квантовый алгоритм для задачи поис-
ка множества строк из словаря в тексте с точки зрения запросной сложно-
сти. Формально задача ставится следующим образом. Даны строка t длины
|t| = n, которую назовем текстом, и набор из m строк S = (s1, . . . , sm) сум-
марной длины L = |s1| + · · · + |sm|. Данный набор назовем словарем. Для
каждой строки sj необходимо найти набор индексов Ij = (ij,1, . . . , ij,kj), такой
что sj является подстрокой t, начиная с символа ij,k, для всех 1 6 k 6 kj
для некоторого целого kj. В классическом случае известен алгоритм Ахо—
Корасик [1], который решает задачу и имеет временную и запросную слож-
ность O(n+L). В то же время эта сложность совпадает и с нижней оценкой
Ω(n + L). Мы предлагаем квантовый алгоритм, который имеет запросную
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сложность O∗(n +
√
mL), где O∗ скрывает не только константный, но и ло-

гарифмический множитель. Кроме того, мы показали, что это совпадает и с
нижней оценкой на квантовую запросную сложность Ω(n+

√
mL). Временная

сложность разработанного квантового алгоритма отличается от запросной на
логарифмический множитель.
Использованные подходы и инструменты. Для строки

u = (u1, . . . , u|u|) обозначим за |u| длину строки, за u[i : j] = (ui, . . . , uj) —
подстроку. Сравнивая строки, мы подразумеваем сравнение в лексикогра-
фическом порядке. Пусть suf = (suf1, . . . , sufn) —перестановка из чисел от
1 до n, называемая суффиксным массивом для строки t. В нем указаны ин-
дексы суффиксов в отсортированном порядке, т. е. t[sufi : n] < t[sufi+1 : n].
Согласно [2], его можно построить так, что временная и запросная сложность
будет O(n). Пусть LCP (u, v) —длина наибольшего общего префикса для
двух строк u и v. Согласно [3, 4], можно построить специальную структуру
данных, которая позволит узнать LCP (t[sufi : n], t[sufj : n]) для произволь-
ных i и j так, что временная и запросная сложность будет O(1). Данный
подход требует препроцессинг который работает за O(n). Для произвольной
пары строк u и v определим квантовую процедуру QLCP (u, v, i), которая
находит LCP (u, v) в предположении, что u[1 : i] = v[1 : i]. Согласно [5],
запросная сложность данной процедуры равна O(

√
b− i), где b = LCP (u, v).

Алгоритм. Рассмотрим строку sj. Если sj является подстрокой t,
начиная с индекса i, тогда sj —префикс суффикса t[sufi : n], т. е.
t[sufi : sufi + |sj| − 1] = sj. Так как суффиксы упорядочены, то все суф-
фиксы, содержащие sj в качестве префикса, находятся последовательно. Ал-
горитм находит два параметра leftj и rightj такие, что sj является пре-
фиксом для всех суффиксов t[sufi : n], где i ∈ {sufleftj , . . . , sufrightj}, т. е.
Ij = (sufleftj , . . . , sufrightj). Рассмотрим алгоритм для поиска leftj, пара-
метр rightj находится аналогично. Алгоритм основывается на бинарном по-
иске. Пусть Le будет левой границей отрезка, в котором мы ищем требуемый
элемент, а Ri—правой. Обозначим за Sti = t[sufi : n] i-ый суффикс, где
i ∈ {1, . . . , n}.

Шаг 1. Присвоим Le← 1 и Ri← n. Пусть Llcp← QLCP (StLe, s
j) будет

LCP для первого суффикса и строки sj. Пусть Rlcp ← QLCP (StRi, s
j)

будет LCP для последнего суффикса и строки sj.
Шаг 2. Если Llcp < |sj| и sj < St1, т. е. Llcp < |sj| и
sj[Llcp+ 1] < St1[Llcp+ 1], то можно сказать, что sj меньше любого суф-
фикса t и не является префиксом любого из суффиксов t. В этом случае
Ij —пустая и мы останавливаем алгоритм, иначе переходим к Шагу 3.
Шаг 3. Если Rlcp < |sj| и sj > Stn, т. е. Rlcp < |sj| и
sj[Rlcp+ 1] > Stn[Rlcp+ 1], то можно сказать, что sj больше любого суф-
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фикса t и не является префиксом любого из суффиксов t. В этом случае
Ij —пустая и мы останавливаем алгоритм, иначе переходим к Шагу 4.
Шаг 4. Пока Ri−Le > 1, мы повторяем следующие шаги, иначе перехо-
дим к Шагу 9.
Шаг 5. Пусть M ← b(Le+Ri)/2c.
Шаг 6. Если Llcp > Rlcp, тогда переходим к Шагу 7, а иначе к Шагу 8.
Шаг 7. Сравним LCP (StL, StM) и Llcp. Напомним, что LCP (StLe, StM)
вычисляется за O(1). Есть один из трех вариантов:

— Если LCP (StLe, StM) > Llcp, то все суффиксы с StLe по StM такие,
что StM [Llcp + 1] = · · · = StLe[Llcp + 1] 6= sj[Llcp + 1], и они не могут
иметь sj в качестве префикса. Тогда мы присваиваем Le ← M и не
изменяем Llcp.

— Если LCP (StLe, StM) = Llcp, то все суффиксы с StLe по StM
имеют как минимум префикс длины Llcp, общий с sj. Вычислим
Mlcp = LCP (StM , s

j) с помощью QLCP (StM , s
j, Llcp + 1). Если

Mlcp = |sj|, то мы можем подвинуть правую границу в M и об-
новить Rlcp, т. к. мы ищем самое правое вхождение sj: Ri ← M
и Rlcp ← Mlcp. Аналогично обновляем R и Rlcp в случае, если
StM [Mlcp + 1] > sj[Mlcp + 1]. Если StM [Mlcp + 1] < sj[Mlcp + 1],
то Le←M и Llcp←Mlcp.

— Если LCP (StLe, StM) < Llcp, то все суффиксы с StM по StR не мо-
гут быть префиксом sj. Следовательно, мы присваиваем Ri ← M и
Rlcp← LCP (StLe, StM).

После этого шага мы переходим к Шагу 4.
Шаг 8. Данный шаг аналогиченШагу 7, но сравнивается LCP (StM , StRi)
и Rlcp. Существует три варианта:

— Если LCP (StM , StRi) > Rlcp, то Ri←M и Rlcp не изменяется.
— Если LCP (StM , StRi) = Rlcp, то вычисляем Mlcp = LCP (StM , s

j) с
помощью QLCP (StM , s

j, Rlcp+ 1). В этом случае обновляем перемен-
ные по тем же правилам, как и во втором варианте Шага 7.

— Если LCP (StM , StRi) < Rlcp, то L←M и Llcp← LCP (StM , StRi).

После этого шага мы переходим к Шагу 4.
Шаг 9. Результатом поиска является Ri, и мы присваиваем leftj ← Ri.

В целом алгоритм состоит в том, чтобы определить leftj и rightj для каждой
строки sj, где j ∈ {1, . . . ,m}. Сложность рассмотренного алгоритма приве-
дена далее.
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Теорема 1. Приведенный алгоритм решает задачу, имеет запросную
сложность O(n +

√
mL log n + m log n) и имеет вероятность ошибки не

более 0.1.

Нижняя оценка на запросную сложность алгоритма приведена в следую-
щей теореме

Теорема 2. Нижняя оценка на запросную сложность задачи поиска мно-
жества строк из словаря в тексте в классическом случае — Ω(n + L), в
квантовом случае — Ω(n+

√
mL).

Работа выполнена за счет средств Программы стратегического академи-
ческого лидерства Казанского (Приволжского) федерального университета
(«ПРИОРИТЕТ-2030»).
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О реализации классов шахматных позиций
управляющими системами

Хелемендик Роман Викторович
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В классических работах С.В. Яблонского [1] и [2] (совместно с
А.А.Ляпуновым) шахматы упоминаются многократно и рассматриваются
как один из модельных объектов теории управляющих систем (УС). Соглас-
но [2] в УС выделяются 4 составные части: схема, информация, координаты,
функция; в частности, показывается их интерпретация для шахмат. В даль-
нейших исследованиях многие УС (формулы, схемы из функциональных эле-
ментов (СФЭ) и др.) представляются парой U = 〈Σ,Φ〉, где Σ — структура,
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а Φ —функционирование, что позволяет рассматривать их совместно, разра-
батывать и применять общие методы анализа, синтеза. В настоящей работе
предложены представление шахматных позиций в виде таких УС U = 〈Σ,Φ〉,
а также реализация некоторых классов шахматных позиций средствами УС.

Реализация шахматной позиции в виде УС

Мы будем задавать шахматную позицию булевой функцией (б.ф.) от 8 пере-
менных с помощью содержательного и формального использования всех (не
более чем) двухместных булевых функций. С содержательной точки зрения
двухместные б.ф. соотвествуют шахматным фигурам на клетках доски, и
тогда они называются индексированными, а с формальной являются состав-
ными элементами (в формулах, СФЭ) при реализации итоговой б.ф. Она
строится путем получения по позиции набора индексированных функций,
состоящего из следующих 4 этапов:
1. Расположение фигур на доске кодируем набором из 64 двухместных б.ф.
f(x, y)i, 1 6 i 6 64, с возможным уточнением некоторых элементов набора
на последующих этапах. Сопоставим белому королю (K), ферзю (Q), ладье
(R), слону (B), коню (N), пешке (P) соответствующие двухместные функ-
ции: & (т. е. x&y), 6→ (антиимпликацию), 6← (левую антиимпликацию), x,
y, ⊕; аналогичным образом черные фигуры k, q, r, b, n, p обозначаем про-
тивоположными функциями: |, →, ←, x̄, ȳ, ∼; пустое поле записываем
константой 0.

2. В случае хода черных и нахождении их короля в поле i заменяем |i на 1i.
3. При наличии возможности рокировки белых (черных) в короткую или

длинную стороны и расположении соответствующих ладей на исходных
позициях заменяем 6← (←) на ∨.

4. Если в позиции последний ход был пешкой на два поля, то для пройденного
ей поля константа 0 меняется на стрелку Пирса ↓.
В полученном наборе f̃ 64 = 〈f1, . . . , fk, . . . , f64〉 нули опускаем; функции fk

будем также обозначать fvg и fvg, где для k-го поля g=g(k)=b(k− 1)/8c+ 1
есть номер горизонтали, v = v(k) = ((k − 1) mod 8) + 1 —номер вертикали,
а v— буквенное обозначение v-й вертикали. Пусть σj ∈ {0, 1}, 1 6 j 6 6,
g(k) = Σ3

j=12
3−jσj + 1, v(k) = Σ3

j=12
3−jσ3+j + 1. Тогда φg(k) = xσ11 x

σ2
2 x

σ3
3 ,

χv(k) = xσ44 x
σ5
5 x

σ6
6 , ϕv(k)g(k) = fk(x7, x8), а итоговая б.ф. f(x̃8) имеет вид

f(x1, . . . , x8) =
64∨
k=1

χv(k)φg(k)ϕv(k)g(k). (1)

Пример 1. Этюд Рети: Kh8, Pc6, ka6, ph5, ход белых; f̃ 64 = 〈∼h5 |a6 ⊕c6 &h8〉,
f(x̃8) = χhφ5(x7 ∼ x8) ∨ χaφ6(x7 | x8) ∨ χcφ6(x7 ⊕ x8) ∨ χhφ8(x7&x8).
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Теорема 1. Всякая шахматная позиция представима в виде б. ф. f(x̃8).

Доказательство. Проводится по общей схеме, приведенной в доказательстве
теоремы 1 из работы [3].

Пусть U1, U2, U3 — виды УС: формулы, СФЭ, многополюсные СФЭ с 3
входами— и пусть Ui = 〈Σi,Φi〉, 16 i6 3, Li = L(Σi), Di =D(Σi) —длина и
глубина Σi соотвественно, m = mf(x̃8) — вес б.ф. f(x̃8), т. е. количество ее еди-
ничных наборов и i1, . . . , ih, . . . , im—номера всех таких наборов, 0 6 ih 6 255,
1 6 h 6 m.

Теорема 2. Всякая шахматная позиция реализуема в виде U1, U2, U3.

Доказательство. В силу теоремы 1 и формулы 1 произвольная шахматная
позиция может быть реализована как в виде формул, так и в виде СФЭ с 8
входами и одним выходом, реализующей ту же б.ф. В УС U3 = U3(m) номер
ih каждого единичного набора является также номером некоторой функции
от 3 переменных, поэтому соответствующая ему функция реализуется на вы-
ходе h в многополюсной СФЭ с 3 входами и m = mf(x̃8) выходами.

Реализация классов шахматных позиций в виде УС

Заметим, что не всякая б.ф. от 8 переменных имеет своим прообразом шах-
матную позицию, а для однозначного определения f(x̃8) необходимо согласо-
ванное задание позиции (см. выше этапы 3, 4).
Описание и примеры реализации классов позиций. КлассKM : шах-

матно-математические задачи (см. [4]); его детализация:KMQ— задачи о рас-
становке ферзей, KMQS — задача Эйлера о мирных (безопасных) расстанов-
ках ферзей. Решения представимы в виде f̃ 64 и f(x̃8), реализуемы в виде
УС U3 при m = mf(x̃8) = 8, причем минимальной по глубине (D3 = 2) в U3

является расстановка 〈6→a5 6→b3 6→c1 6→d7 6→e2 6→f8 6→g6 6→h4〉, L3612, хотя для ее
отражений D3>2, но для поворотов D3 =2, L3615.

Классы KL, K×, K1/2, K1 (K0) — легальных, матовых, ничейных, выиг-
ранных за белых (черных) позиций, соответственно; позиция легальна, ес-
ли допускается правилами шахмат. Характеризуем эти классы на примере
K{&|∗6←}—позиций «король + белая ладья против короля» (|∗ есть | или 1).
Пусть Ψ1

1 = {χbφ6(x7&x8) ∨ χaφ8 ∨ χr(a)φ8(x7 6← x8)}, r(a) ∈ {c, d, e, f, g, h},
Ψ1
v = {χv(φ6(x7&x8) ∨ φ8) ∨ χr(v)φ8(x7 6← x8)}, v ∈ {a, b, c, d}, 4 6 r(b) 6 8,

r(c) ∈ {1, 5..8}, r(d) ∈ {1..2, 6..8}, Ψ1 = Ψ1
1∪ (∪v16v64Ψ

1
v), |Ψ1| = 27. В ви-

де U2 класс Ψ1 реализуем с параметрами m = 27, L2 6 63, D2 6 5. Тогда
K{&16←}×=(∪s16s68Ψ

s) перечисляет все матовые позиции (с учетом 8 симмет-
рий квадрата), K{&|∗6←}L=KL∩K{&|∗6←}, а позиции, в которых пат или черные
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своим ходом съедают ладью, составляют класс K{&|∗6←}1/2 =K{&|∗6←}L\K{&|∗6←}1.
При этом от любой позиции из K{&|∗6←}1 (выигранной) белые всегда могут
перейти к позиции из K{&|∗ 6←}× = K{&16←}×, поэтому K{&16←}× является так
называемым выигрывающим базисом для эндшпилей K{&|∗6←}.
Взаимосвязи УС и шахмат. Реализация классов шахматных позиций

в терминах УС предоставляет новые возможности для взаимодействия мате-
матической кибернетики и шахмат. Это позволяет по табличной классифика-
ции из [2] работать с шахматными позициями как с конкретными объектами
вида U = 〈Σ,Φ〉, сочетая макроподход и микроподход, исследовать функ-
ционирование, алгоритмизацию, эквивалентные преобразования, эволюцию
УС. С другой стороны, знания, технологии, оценки, анализы, накопленные в
шахматах, переводимы в область УС, поэтому и взгляд на УС с точки зрения
шахмат представляется интересным как в теории, так и на практике.
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Как известно [1, §§ 2–3 главы 2], формулы над множествами булевых функ-
ций могут рассматриваться как частный случай схем из функциональных
элементов (СФЭ), а именно как СФЭ с одним выходом без ветвлений на вы-
ходах функциональных элементов (ФЭ). В рамках этой парадигмы вполне
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корректно поставленной оказывается задача о тестировании формул. Будем
считать, что в любой базис неявно входит тождественная функция.

Пусть на СФЭ или формулу S над полным базисом B, реализовывавшую
булеву функцию f(x1, . . . , xn), мог подействовать источник неисправностей
(ИН) U , способный преобразовать S в любую схему (формулу) из конечного
содержащего S множества H схем (формул). Как правило, об ИН предпола-
гается, что он не добавляет новые входы и выходы. Источник неисправностей
обычно задается описанием тех поломок, которые он может вызывать в схеме.
Тестовое исследование схемы состоит в анализе выходных значений, возника-
ющих в качестве реакций схемы на подачу на входы схемы входных наборов
(то есть наборов значений входных переменных).

Константные неисправности на выходах ФЭ заключаются в заменах неис-
правных ФЭ элементами, реализующими булевы константы. В настоящей ра-
боте рассматривается источник Oc

1 одиночных произвольных константных
неисправностей на выходах ФЭ (применительно к формулам над базисом
B′1 = {x & y, x ⊕ y, x ∼ y} жегалкинского типа; будут также упоминаться
базис Жегалкина B1 = {x & y, x⊕ y, 1}) и источник IOc

1 одиночных произ-
вольных константных неисправностей на входах и выходах ФЭ.

Множество T входных наборов схемы (формулы) S является проверяющим
тестом (ПТ) для схемы (формулы) S относительно ИН U тогда и только
тогда, когда для любой схемы (формулы) S ′ из множества H имеет место
импликация: если S ′ реализует булеву функцию g(x1, x2, . . . , xn), не равную
f(x1, x2, . . . , xn), то в T найдется набор α̃ такой, что f(α̃) 6= g(α̃).

Число наборов в тесте T именуется длиной теста и обозначается как L(T ).
Минимальным тестом называется тест минимальной длины. Длина мини-
мального ПТ для схемы или формулы S относительно источника неисправно-
стей U обозначается через Ldt(U, S). Схема (формула) S называется неизбы-
точной относительно ИН U , если при любой меняющей хоть на каком-то вход-
ном наборе прохождение сигналов в схеме (соответственно формуле) одиноч-
ной поломке функционального элемента, вызванной источником U , получен-
ная схема (формула) реализует функцию, не равную функции, реализуемой S
в отсутствие неисправностей. Длиной ПТ для реализуемой СФЭ (формулами)
над базисом B булевой функции f относительно источника неисправностей
U называется величина Ldt

C,B(U, f) (соответственно Ldt
F,B(U, f)), равная мини-

муму по всем неизбыточным реализующим f схемам (соответственно форму-
лам) S над базисом B величин Ldt(U, S). Функцией Шеннона (ФШ) длины
проверяющего теста относительно источника неисправностей U для СФЭ
(формул) над базисом B называется величина Ldt

C,B(U, n) = max
f∈P2(n)

Ldt
C,B(U, f)

(соответственно Ldt
F,B(U, n) = max

f∈P2(n)
Ldt

F,B(U, f)).
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Специально тесты для формул ранее не рассматривались, хотя некоторые
результаты для СФЭ— например, константные верхние оценки для ФШ дли-
ны единичного проверяющего теста относительно инверсных неисправностей
на выходах ФЭ в СФЭ над некоторыми базисами [2] —фактически являются
и соответствующими результатами для формул. Однако константные верхние
оценки ФШ длины единичного ПТ при произвольных константных неисправ-
ностях на выходах элементов неизвестны. Приведем обзор результатов, близ-
ких к изучаемой здесь задаче (речь пойдет об оценках функций Шеннона
длины единичного ПТ относительно произвольных константных неисправ-
ностей на выходах ФЭ в СФЭ). По умолчанию оценки функций Шеннона
справедливы для любого n, n ∈ N.

В [3] фактически доказано, что в базисе B1 любую булеву функцию n пере-
менных можно смоделировать формулой с одним дополнительным аргумен-
том, допускающей универсальный единичный ПТ длины не более n+ 4 отно-
сительно IOc

1. В [4] эта оценка понижена до n+3, а в [5, с. 113–116] фактически
доказано, что Ldt

F,B1
(IOc

1, n) 6 n + 3. В работах [6–8] установлено, что в про-
извольном полном базисе B имеет место верхняя оценка Ldt

C,B(Oc
1, n) 6 n+ 3

(в ряде базисов фактически используются формулы). В [9] доказано, что
Ldt

C,B′1
(IOc

1, n) 6 16. В [10] доказано, что для произвольного конечного полного
базиса B имеют место оценки 2 6 Ldt

C,B(Oc
1, n) 6 4. В [11] доказано, что при

n > 3 в любом полном базисе B, содержащемся в множестве элементарных
конъюнкций с одинаковыми степенями переменных, линейных функций двух
переменных и функций, представляющих собой конъюнкцию x1x̄2 и некото-
рой функции, Ldt

C,B(Oc
1, n) > 3. В [12] доказано, что Ldt

C,{xy, x̄, x⊕y⊕z}(O
c
1, n) = 2.

Здесь же установлен следующий результат.

Теорема 1. При любом натуральном n имеет место оценка
Ldt

F,B′1
(Oc

1, n) 6 3.

Идея доказательства основана на разложении функции по одной перемен-
ной с представлением компонент в виде полиномов Жегалкина.

В силу нижней оценки Ldt
F,B′1

(Oc
1, x1 ∨ x2) > 3 выводится следующее утвер-

ждение.

Теорема 2. При любом натуральном n, n > 2, имеет место равенство
Ldt

F,B′1
(Oc

1, n) = 3.

Работа выполнена при финансовой поддержке Минобрнауки в рамках ре-
ализации программы Московского центра фундаментальной и прикладной
математики по соглашению №075-15-2022-284.
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К вопросу о простоте регулярных турниров
Шабаркова Александра Олеговна, Абросимов Михаил Борисович

Саратовский национальный исследовательский государственный университет имени
Н. Г. Чернышевского; shabarkova_alex.andra@mail.ru, mic@rambler.ru

Введение

Напомним, что турниром называется полный направленный граф. Клас-
сом эквивалентности ε на множестве S, соответствующим элемен-
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ту, называется множество ε(x) = y ∈ S : x ∼ y. Пусть ε—некото-
рое отношение эквивалентности на множестве вершин V орграфа

−→
G .

Факторграфом орграфа
−→
G по эквивалентности ε называется орграф−→

G/ε = (V/ε, αε), где V/ε—множество классов эквивалентности ε;
αε = (ε(v1), ε(v2)) : ∃u1 ∈ ε(v1), u2 ∈ ε(v2)(u1, u2) ∈ α).

Конгруэнция турнира
−→
T = (V, α) — это такая эквивалентность на множе-

стве его вершин, что факторграф по ней является турниром. То есть кон-
груэнция турнира

−→
T = (V, α) — это такая эквивалентность θ ⊆ V × V , что

никакие два различных θ-класса не имеют встречных дуг [1]. Con
−→
T — это

совокупность всех конгруэнций турнира
−→
T . Con

−→
T образует решётку [2]. Тур-

нир
−→
T = (V, α) называется простым, если решётка Con

−→
T двухэлементна,

т. е. если
−→
T не содержит собственных нетождественных конгруэнций. Граф

называется регулярным, если все его вершины имеют одинаковые степени
захода и исхода.

Строению турниров посвящено много работ, см. например [3]. Простым
турнирам посвящена работа [4]. Известно, что у каждого турнира имеется
вершинное 1-расширение до простого турнира [5].

В данной работе мы рассмотрим регулярные турниры относительно свой-
ства простоты, опишем их структуру и количество. Начнём с простого регу-
лярного турнира.

Простые регулярные турниры

Теорема 1. Для каждого нечётного n существует по крайней мере один
простой регулярный турнир. При некоторой нумерации вершин список
смежности такого турнира можно представить в следующем виде:

vi : vi+j mod n, j = 1, n−1
2 , i = 1, n.

Рис. 1: Простые регулярные турниры размерности 3 и 5 со структурой, опи-
санной в теореме 1.
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На рисунке 1 демонстрируются простые регулярные турниры с описанной
в теореме 1 структурой с количеством вершин 3 и 5.

Регулярный турнир также может простым не являться. Покажем это.

Регулярные турниры, не являющиеся простыми

Теорема 2. Для турнира размерности n = 3k существует не менее C3
|k|

регулярных турниров, не являющихся простыми, где |k|— количество ре-
гулярных турниров размерности k.

Обобщим полученный результат.

Теорема 3. Для турнира размерности n = mk существует не менее Cm
|k|

регулярных турниров, не являющихся простыми, где |k|— количество ре-
гулярных турниров размерности k, а m—нечётное.
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Основной причиной развития сердечно-сосудистых патологий является на-
рушение механизмов регуляции артериального давления [1], среди которых
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особое значение придается основному механизму нейрогенной регуляции ар-
териального давления— артериальному барорецепторному рефлексу (или ба-
рорефлексу) [2, 3]. Дисфункция барорефлекса считается одним из основных
факторов риска развития гипертонии и рассматривается в качестве предик-
тора в математических моделях прогнозирования и диагностики гипертонии
и других сердечно-сосудистых заболеваний [4, 5]. На сегодняшний день с при-
менением разных принципов и подходов создано множество математических
моделей сердечно-сосудистой системы и механизмов ее контроля, в частно-
сти, барорецепторной регуляции артериального давления [6, 7, 8]. В работе [9]
была описана автоматная модель барорефлекса с дискретными параметрами.

В нашей работе предложена математическая модель барорефлекса на ос-
нове линейных гибридных автоматов, показывающая сходимость к точке рав-
новесия системы барорефлекса.

Пусть f1(p) —убывающая функция, отображающая зависимость измене-
ния активности симпатической нервной системы (СНС) от изменения вели-
чины артериального давления (АД), f2(c) — возрастающая функция, отобра-
жающая зависимость величины АД от уровня активности СНС. В системе
барорефлекса равновесие достигается в точке (c0, p0) пересечения функци-
ональных кривых f1(p) и f2(c), координаты которой соответствуют уровню
нормального АД и соответствующей активности СНС. При отклонении АД
от своего нормального уровня p0 активность СНС также отклонится от сво-
его нормального уровня c0 в соответствии с функцией f1(p), что повлечет за
собой изменение значения АД согласно функции f2(c) и т. д. Взаимное влия-
ние на значение друг друга прекратится только в том случае, когда текущее
значение p станет равным p0 и текущее значение c станет равным c0.

Назовем линейным гибридным автоматом набор
Hδ = (A, B, Z, ϕ, ψ, δ, z0) с выделенными начальным состоянием z0 ∈ Z
и параметром δ ∈ R, где: A, B, Z —множества вещественных чисел R,
являющиеся соответственно входным алфавитом, выходным алфавитом и
алфавитом состояний автомата Hδ; ϕ—функция перехода автомата Hδ,
определенная на множестве A×Z и принимающая значение из множества Z,
такая что ϕ(a, z) = ϕ sign (a − z) + z; ψ—функция выхода автомата Hδ,
определенная на множестве A × Z и принимающая значение из множества
B, такая что ψ(a, z) = z; δ—шаг автомата Hδ, определяющий величину
изменения параметров автомата Hδ за один такт.

В данной работе, в отличие от классического описания гибридных си-
стем [10], представлено упрощенное описание линейного гибридного автома-
та с одним входным и выходным множествами вещественных чисел. Понятие
«времени» автоматаHδ носит дискретный характер, и отсчеты времени t при-
надлежат множеству натуральных чисел N. Автомат Hδ при подаче на его
вход последовательности a(1), a(2), . . . выдает на выходе последовательность
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b(1), b(2), . . . в соответствии со следующими каноническими уравнениями: z(1) = z0,
z(t+ 1) = ϕ( a(t), z(t)),
b(t) = ψ(a(t), z(t)).

Назовем барорецепторным комплексом (БР-комплексом) набор

K =< f1(p), f2(c), H
δ
P , H

δ
C , c0, p0, c1, p1 >,

где: f1(p) и f2(c) —функции зависимости реакции СНС в ответ на измене-
ние величины АД и значений АД в ответ на изменение СНС соответственно;
Hδ
P и Hδ

C —два экземпляра одного и того же автомата Hδ, формирующие
состояние БР-комплекса в каждый момент времени t; c0 и p0 —равновесное
состояние автоматовHδ

P иHδ
C , где c0 = f1(p0) и p0 = f2(c0); c1 и p1 — значения

входных сигналов автоматовHδ
P иHδ

C соответственно в момент времени t = 1
(координаты отклонения БР-комплекса). Состояние БР-комплекса в момент
времени t определяется парой (c(t), p(t)), где c(1) = c1, p(1) = p1 при t = 1
и c(t) = ψ ( z(t − 1), f1(p(t − 1))), p(t) = ψ ( z(t − 1), f2(c(t − 1))) при t > 2.
В каждый момент времени t состояние БР-комплекса (c(t), p(t)) изменяется
за счет изменения внутреннего состояния автоматов Hδ

P и Hδ
C и стремится к

своему равновесному состоянию (c0, p0), что на плоскости [C,P ] отражается
в перемещении точки (c(t), p(t)) в точку с координатами (c0, p0). В данной ра-
боте в качестве расстояния рассматривается расстояние по Манхэттену, т. е.
расстояние между точками (c1, p1) и (c2, p2) равно |c1 − c2|+ |p1 − p2|.

Теорема 1. Пусть f1(p) — строго убывающая функция, f2(c) — строго воз-
растающая функция, тогда для любого вещественного числа ε > 0 суще-
ствует вещественное число δ > 0, такое что для любого отклоненного со-
стояния (c1, p1) от состояния равновесия (c0, p0) существует момент вре-
мени T , такой что для любого момента времени t > T состояние (c(t), p(t))
барорецепторного комплекса < f1(p), f2(c), H

δ
P , H

δ
C , c0, p0, c1, p1, δ > будет на-

ходится в ε-окрестности точки (c0, p0), т. е. будет выполнено неравенство
|c(t)− c0|+ |p(t)− p0| 6 ε.

Биологической интерпретацией теоремы о сходимости БР-комплекса к точ-
ке равновесия является математически доказанное подтверждение теорети-
ческих рассуждений и экспериментальных данных о том, что система баро-
рецепторного рефлекса, если она не подвержена никаким другим влияниям,
при отклонении возвращается в состояние равновесия [3].

Вышесказанное позволяет заключить об адекватности предлагаемой моде-
ли БР-комплекса, построенной линейными гибридными автоматами, с систе-
мой барорецепторного рефлекса.
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О генерации униграфов с заданным числом
вершин
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В работе рассматривается задача быстрого перечисления униграфов без
необходимости проверок на изоморфизм и униграфичность. Здесь и далее
используются основные определения по теории графов, данные в [1]. Все рас-
сматриваемые графы неориентированные.

Определение. Вектором степеней графа называется невозрастающая по-
следовательность степеней его вершин.

Определение. Будем называть граф униграфом, если не существует ни-
какого другого неизоморфного графа с таким же вектором степеней.

Существует эффективный алгоритм ответа на вопрос, является ли задан-
ный граф униграфом (см. статью [2]). Напомним, что кликой графа называ-
ется любой полный подграф, содержащийся в данном графе, а независимым
множеством графа называется любое множество попарно несмежных вер-
шин графа. Для построения алгоритма перечисления существенно использу-
ются результаты Тышкевич из [2, 3] о распознавании униграфов и их струк-
туре, поэтому приведём их краткий обзор.

Определение. Расщепляемым графом называется граф G, множество вер-
шин которого можно разделить на два непересекающихся множества A и
B, где вершины из A образуют клику, а вершины из B образуют независи-
мое множество.

Определение. Расщепляемой тройкой называется тройка (G,A,B), где
G = (V, α) — расщепляемый граф, A— клика, B —независимое множество,
A ∪ B = V и A ∩ B = ∅. Будем считать две тройки (G1, A1, B1) и
(G2, A2, B2) изоморфными, если существует изоморфизм φ графов G1 и G2

и при этом φ(A1) = A2, φ(B1) = B2.

Определение. Пусть есть расщепляемая тройка (G,A,B) и произвольный
граф H (при этом множества вершин G и H не пересекаются). Тогда ком-
позицией F = (G,A,B) ◦H будем называть граф, полученный добавлением
в объединение графов G ∪ H рёбер между каждой вершиной из A и каж-
дой вершиной из H. Произвольный граф L называется разложимым, если
его можно представить в виде подобной композиции, и неразложимым в
противном случае.
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Теорема 1. Любой граф F можно представить в виде канонического раз-
ложения F = (G1, A1, B1) ◦ . . . ◦ (Gk, Ak, Bk) ◦ H, где H —неразложимый
нерасщепляемый граф, Gi—неразложимые расщепляемые графы. При этом
декомпозиция определяет граф с точностью до изоморфизма.

Теорема 2. Граф F является униграфом тогда и только тогда, когда все
графы в его каноническом разложении являются униграфами.

К этой теореме в работе [3] также прилагается описание всех неразложи-
мых униграфов в виде нескольких параметризованных классов. Структура и
вектор степеней этих графов в зависимости от параметров известен.

Алгоритм генерации униграфов

Теоремы из предыдущего раздела позволяют разработать концептуально про-
стой алгоритм генерации всех униграфических векторов степеней для гра-
фов с заданным числом вершин, не требующий ни перебора всех графов,
ни проверок на изоморфизм. Согласно теореме 1, граф определяется своим
каноническим разложением с точностью до изоморфизма. Согласно теореме
2, униграфами являются только те графы, у которых все члены их канони-
ческого разложения— униграфы. Параметризованные классы неразложимых
униграфов приводятся, например, в [2, 3]. Таким образом, если для заданного
числа вершин n сгенерировать список всех неразложимых униграфов с чис-
лом вершин не более n, а потом перебирать их всевозможные композиции,
можно найти среди них все униграфы с числом вершин равным n.
Алгоритм перечисления униграфических векторов степеней
Вход: число n.
Выход: униграфические векторы степеней для графов с n вершинами.
Шаг 1. Создать списки basicNonSplits, basicSplits.
Шаг 2. Добавить в basicNonSplits пустой граф. Добавить в

basicNonSplits все неразложимые нерасщепляемые графы с числом вершин
не больше n.
Шаг 3. Добавить в basicSplits все неразложимые расщепляемые графы с

числом вершин не больше n.
Шаг 4. Для каждого графа NS из basicNonSplits делать шаги 5–6. По

окончании перейти к шагу 7.
Шаг 5. Если |NS| = n, то выдать NS и вернуться к шагу 4 для следу-

ющего графа.
Шаг 6. Для всех графов S из basicSplits запускать процедуру

recEnum(S ◦NS), если |S ◦NS| = |S|+ |NS| 6 n
Шаг 7. Все униграфы с числом вершин n перечислены, конец.
Процедура recEnum(G)
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Вход: граф G.
Шаг 1. Если |G| = n, то выдать G и выйти из процедуры на уровень

выше.
Шаг 2. Для всех графов S из basicSplits запускать процедуру

recEnum(S ◦G), если |S ◦G| = |S|+ |G| 6 n.
Отметим два факта об этом алгоритме. Во-первых, содержательная часть

данного алгоритма (шаги 4–7 и процедура recEnum(G)) концептуально похо-
жа на перебор строк длины не более n некоторого алфавита и независимую
проверку некоторых условий на каждой из строк, поэтому эта часть алго-
ритма может исполняться параллельно. Во-вторых, для униграфов вектор
степеней задаёт граф однозначно, поэтому операции алгоритма могут произ-
водится над векторами степеней. Это значительно экономит вычислительные
ресурсы для расчёта композиции.

Предложенный алгоритм был реализован авторами на языке Go в однопо-
точном режиме и позволил найти количество униграфов с 11–21 вершинами.
До этого в OEIS A122423 [4] была доступна информация только об униграфах
с не более чем 10 вершинами. В таблице приведены найденные результаты
и время работы программы на процессоре AMD® Ryzen 5 2600 (частота
3,4 ГГц).

Число вершин Число униграфов Время работы генератора
11 5304 меньше секунды
12 12555 меньше секунды
13 29754 меньше секунды
14 70662 1 с.
15 167834 2 с.
16 398627 4,7 с.
17 946402 11,6 с.
18 2246294 31,7 с.
19 5330340 1 м. 19 с.
20 12647767 3 м. 3 с.
21 30010020 7 м. 26 с.
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Введение

При проектировании интегральных схем для современных портативных вы-
числительных устройств важной проблемой стала оценка и оптимизация
энергопотребления схемы. Традиционно рассматривают два типа энергопо-
требления: статическое, связанное с рассеянием тепла и поддержанием за-
данного высокого потенциала в узлах схемы, подключенных к источнику пи-
тания, и динамическое, возникающее при изменении потенциалов в узлах
схемы.

Первые подходы к анализу статического энергопотребления для модели
схем из функциональных элементов (СФЭ) были предложены в работе [1],
а основные теоретические результаты в этом направлении были получены
О.М. Касим-Заде в работах [2, 3]. В указанных работах был введен и иссле-
дован функционал мощности СФЭ, характеризующий статическое энерго-
потребление, для которого был установлен порядок роста соответствующей
функции Шеннона в произвольном конечном полном базисе. Оказалось, в
частности, что существуют базисы как с линейным, так и с экспоненциаль-
ным поведением указанной функции Шеннона. Кроме того, была показана
возможность построения для «типичной» функции алгебры логики (ФАЛ)
такой реализующей ее СФЭ, сложность которой асимптотически оптималь-
на, а мощность оптимальна по порядку роста.

В работе [4] был введен функционал динамической (переключательной)
активности для СФЭ. При этом было доказано, что в произвольном бази-
се порядок роста функции Шеннона для динамической активности СФЭ не
превосходит некоторую линейную функцию, и были предложены методы син-
теза, позволяющие для произвольной ФАЛ построить СФЭ в стандартном ба-
зисе, сложность которой асимптотически оптимальна, а мощность и динами-
ческая активность оптимальны по порядку роста. Аналогичный функционал
динамической активности был введен для модели ориентированных контакт-
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ных схем в работе [5]. В последние годы появился ряд работ [6–8], в которых
изучается связь рассматриваемых функционалов активности схем с други-
ми сложностными характеристиками схем и свойствами ФАЛ, реализуемых
этими схемами.

Основные определения

Пусть Σ = Σ(x1, . . . , xn; a
′, a′′) —произвольная (1, k)-КС от булевых перемен-

ных (БП) x̃ = (x1, . . . , xn), имеющая вход a′ и выходы a′′ = (a′′1, . . . , a
′′
k), на

которых реализуется оператор F = (f1, . . . , fk), состоящий из ФАЛ fi прово-
димости от входа a′ до выхода a′′i . Пусть V (Σ) —множество вершин ОКС Σ,
отличных от a′ и a′′. Тогда для каждой вершины v, v ∈ V , КС Σ определим
функцию достижимости gv(x̃) от входа a′ до вершины v, которая равна 1 на
наборе α̃ = (α1, . . . , αn) ∈ Bn, где Bn— единичный n-мерный куб, тогда и
только тогда, когда в Σ существует путь из вершины a′ в вершину v, состоя-
щий из проводящих контактов. Статической активностью КС Σ на наборе
α̃ будем называть следующую величину:

E(Σ, α̃) =
∑

v∈V (Σ)

gv(α̃).

Динамической активностью КС Σ на паре наборов α̃ и β̃ будем называть
следующую величину:

S(Σ, α̃, β̃) =
∑

v∈V (Σ)

gv(α̃)⊕ gv(β̃).

Статической активностью (динамической активностью) E(Σ) (S(Σ))
КС Σ назовем максимальное значение величины E(Σ, α̃) (S(Σ, α̃, β̃)), взятое
по всем наборам α̃ из Bn (парам наборов (α̃, β̃) из Bn×Bn соответственно).

Наконец, для произвольного булева оператора F = (f1, . . . , fk) стати-
ческой активностью EКС(F ) (динамической активностью SКС(F )) этого
оператора F в классе КС будем называть минимальную статическую (дина-
мическую) активность (1, k)-КС, реализующих оператор F .

Пусть ν(σ) =
∑n

i=1 σi2
n−i—номер набора σ = (σ1, . . . , σn) при лексикогра-

фическом упорядочивании наборов куба Bn и Kσ(x̃) — элементарная конъ-
юнкция xσ11 x

σ2
2 · . . . ·xσnn . Тогда Ki = Kσ∗(x̃), где i = ν(σ∗). Дешифратором по-

рядка n от БП x1, . . . , xn называется булевский оператор Qn = {K1, . . . , K2n}.
Пусть x̃ = (x1, . . . , xn) и ỹ = (y1, . . . , y2n). Мультплексорной функцией

порядка n называется ФАЛ µn = µn(x̃, ỹ), зависящая от n адресных БП x̃ и
2n информационных БП ỹ, для которой верно следующее представление:

µn(x̃, ỹ) =
∨
σ∈Bn

Kσ(x̃)yν(σ),
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где σ = (σ1, . . . , σn) ∈ Bn—произвольный набор значений переменных x.

Основные результаты

Теорема 1. Существует неотрицательная и стремящееся к нулю после-
довательность действительных чисел ε(1), ε(2), . . . такая, что для любого
n, n = 1, 2, . . ., дешифратор Qn может быть реализован некоторой (1, 2n)-
КС ΣQn, удовлетворяющей неравенствам

LKC(ΣQn) 6 2n(1 + ε(n)), EКС(ΣQn) 6 4n(1 + ε(n)), SКС(ΣQn) 6 8n(1 + ε(n)).

Теорема 2. Существует неотрицательная и стремящееся к нулю последо-
вательность действительных чисел ε(1), ε(2), . . . такая, что для любого n,
n = 1, 2, . . ., мультиплексор µn может быть реализована некоторой (1, 1)-
КС Σµn, удовлетворяющей неравенствам

LKC(Σµn) 6 2n+1(1+ε(n)), EКС(Σµn) 6 5n(1+ε(n)), SКС(Σµn) 6 10n(1+ε(n)).

Работа выполнена при финансовой поддержке Минобрнауки в рамках ре-
ализации программы Московского центра фундаментальной и прикладной
математики по соглашению № 075-15-2022-284.

Список литературы
[1] Вайнцвайг М.Н. О мощности схем из функциональных элементов // До-

клады Академии наук СССР. 1961. Т. 139, №2. С. 320–323.
[2] Касим-Заде О.М. Об одновременной минимизации сложности и мощно-

сти схем из функциональных элементов // Проблемы кибернетики. М. :
Наука, 1978. Вып. 33. С. 215–220.

[3] Касим-Заде О.М. Об одной мере сложности схем из функциональных эле-
ментов // Проблемы кибернетики. М. : Наука, 1981. Вып. 38. С. 117–179.

[4] Ложкин С.А., Шуплецов М.С. О динамической активности схем из функ-
циональных элементов и построении асимптотически оптимальных по
сложности схем с линейной динамической активностью // Ученые запис-
ки Казанского университета. Серия физико-математические науки. 2014.
Т. 156, кн. 3. С. 84–97.

[5] Шуплецов М.С. Оценки функцииШеннона для динамической активности
ориентированных контактных схем // Проблемы теоретической киберне-
тики: XVIII Международная конференция (Пенза, 19–23 июня 2017 г.) :
Материалы. М. : МАКС Пресс, 2017. С. 263-–266.

[6] Dinesh K., Otiv S., Sarma J. New bounds for energy complexity of Boolean
functions // Theoretical Computer Science. 2020. Vol. 845. P. 59–75.



Щавелев В.Э., Пузынина С.А., 167

[7] Mestetskiy M.A., Shupletsov M. S. Relations between energy complexity mea-
sures of Boolean networks and positive sensitivity of Boolean functions //
Discrete Mathematics and Applications. 2024. Vol. 34, no. 4. P. 211–219.

[8] Sun Xiaoming, Sun Yuan, Wu Kewen, Xia Zhiyu. On the relationship between
energy complexity and other Boolean function measures // Computing and
Combinatorics. COCOON 2019. Lecture Notes in Computer Science. 2019.
Vol. 11653. P. 516–528.

Морфические слова с хорошо
распределенными вхождениями подслов

Щавелев Владимир Эдуардович,
Пузынина Светлана Александровна

Санкт-Петербургский государственный университет; vovashavelev11@mail.ru, s.puzynina@gmail.com

В данной работе исследуется свойство бесконечных слов, называемое хо-
рошо распределенными вхождениями факторов. Это свойство абелева типа,
то есть свойство слов, в котором учитывается лишь число вхождений каж-
дой буквы без учета их порядка. Изучение абелевых свойств слов — это одно
из основных направлений современной комбинаторики слов. Помимо теоре-
тического интереса в комбинаторике слов, свойство хорошо распределенных
вхождений факторов применимо для генерирования псевдослучайных после-
довательностей.

Зафиксируем некоторое конечное множество Σ, будем называть его ал-
фавитом, а его элементы— буквами. Всевозможные последовательности из
букв будем называть словами, а множество всех конечных слов, включая пу-
стое слово, обозначать как Σ∗. Подслово конечного или бесконечного слова
из подряд идущих букв называется фактором, а если фактор начинается с
начала слова, то будем его называть префиксом. Для конечного слова u и
буквы a будем обозначать количество букв a, входящих в u, как |u|a, а длину
u как |u|. Фактор с позиции i до позиции j обозначается как w[i, j + 1).

В наше время множество алгоритмов различной сложности основаны на
случайных алгоритмах: ни одна симуляция не обходится без случайных по-
следовательностей, некоторые даже простые алгоритмы, такие как Quick sort,
генерируют случайные числа для оптимальной работы. И естественным об-
разом появляется необходимость в построении случайных последовательно-
стей, однако сделать это непросто, ведь любой алгоритм в каком-то смысле
можно просчитать наперед. Одним из самых простых примеров генераторов
случайных последовательностей являются линейные конгруэнтные генерато-
ры— последовательности Zn+1 = aZn+ c mod m, для некоторых a, c,m ∈ N.

Однако они имеют несвойственный случайным последовательностям де-
фект, называющийся решетчатой структурой: если рассмотреть множество
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из всех n подряд идущих чисел из генератора как подмножество Zn, то они
будут покрываться семейством параллельных плоскостей, не покрывающих
все пространство.

В статье [1], чтобы избавиться от этого дефекта, предлагается генериро-
вать некоторое бесконечное слово w над алфавитом Σ, а также |Σ| линейных
конгруэнтных генераторов Z(i) и далее рассматривать последовательность,
в которой мы в w заменяем все вхождения i-ой буквы на числа в генерато-
ре Z(i). Пусть w = w0w1 · · · — бесконечное слово над алфавитом Σ и Z(i) —
линейные конгруэнтные генераторы. Рассмотрим f —функцию такую, что
f(i) = |{j < i|wj = wi}|, то есть считающую, сколько таких же букв, как
и wi, уже встретилось в w. Тогда новым генератором будет Z(w)n = Z

(wn)
f(n) .

Выбором слова w можно получить последовательность, у которой не будет
дефекта решетчатой структуры. В статье [2] приводится достаточное условие
для отсутствия решетчатой структуры, называемое WELLDOC, или свойство
хорошо распределенных вхождений факторов (well distributed occurrences).

Определение. Будем говорить, что для слова w выполняется свойство
WELLDOC над алфавитом {0, 1, . . . , n−1}, если для любого фактора u и для
любого натурального модуля m выполняется следующее. Пусть i0, i1, . . .—
это позиции, с которых начинается каждое вхождение u в w. Тогда
{(|Prefijw|0, . . . |Prefijw|n−1) mod m | ij ∈ N}.

Каждый из факторов w[ij, ij+1) называется возвратом к u в w. Вектор
(|v|0, . . . |v|n−1) называется вектором Парика слова v.

Другими словами, для бесконечного слова w выполняется свойство
WELLDOC, если для любого фактора u и для любого натурального моду-
ля m найдется префикс p перед u такой, что его вектор Парика совпадает по
модулю m с любым наперед заданным вектором остатков.

В данной работе рассматривается свойство WELLDOC для слов, получаю-
щихся как предел применения некоторого морфизма последовательно к неко-
торой букве и последующим ее образам; такие слова называются морфиче-
скими. Преимущество использования таких слов для построения генераторов
состоит, в частности, в том, что такие слова можно очень быстро генериро-
вать.

Морфизмом φ называется отображение из Σ∗ в Σ∗ такое, что
φ(uv) = φ(u)φ(v) для всех слов u, v ∈ Σ∗. Все рассматриваемые в этой работе
морфизмы будут нестирающими: образ любого непустого слова не является
пустым. Рассмотрим неподвижные точки морфизма φ, то есть бесконечные
слова w такие, что x = φ(x). Говорят, что морфизм φ— продолжаемый бук-
вой a, если образ φ(a) начинается с буквы a, другими словами, если φ(a) = as
для некоторого непустого слова s. Тогда для каждой буквы a, на которой
морфизм φ продолжаемый, у него есть неподвижная точка, так как φn(a)
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является префиксом φn+1(a) для всех n ∈ N, и предел последовательности
(φn(a))n>0 будет являться бесконечным словом:

w = lim
n→∞

φn(a).

Слова, порожденные таким образом, называются морфическими.

Определение. Морфизм φ называется примитивным, если φk(x) для лю-
бой буквы x и некоторого k содержит каждую букву алфавита, и непри-
митивным иначе.

Определение. Матрицей морфизма φ называется следующая матрица по-
рядка σ = |Σ|:

Aφ =


|φ(0)|0 |φ(1)|0 . . . |φ(σ − 1)|0
|φ(0)|1 |φ(1)|1 . . . |φ(σ − 1)|1

... ... . . . ...
|φ(0)|σ−1 |φ(1)|σ−1 . . . |φ(σ − 1)|σ−1

 .

Основным результатом работы является критерий выполнения свойства
WELLDOC для морфических слов в терминах матрицы соответствующего
морфизма.

Теорема 1. Пусть w— бесконечное бинарное слово, порожденное прими-
тивным морфизмом φ. Тогда для w выполнено WELLDOC тогда и только
тогда, когда detAφ = ±1.

Замечание. Здесь и далее мы не считаем слова 0∞ и 1∞ бинарными. Для
этих слов WELLDOC выполняется, и при этом их можно задать морфиз-
мом φ(0) = 00, φ(1) = 11 с определителем 4.

Для небинарных морфических слов, порожденных примитивными морфиз-
мами, требуется дополнительное структурное условие на возвраты к первой
букве.

Теорема 2. Пусть w— бесконечное слово, порожденное примитивным мор-
физмом φ. Тогда для w выполнено WELLDOC тогда и только тогда, когда
detAφ = ±1 и вектора Парика всех возвратов к первой букве w порождают
пространство Z|Σ| как группа по сложению.

Отметим, что дополнительное условие на векторы Парика префиксов
несложно проверить алгоритмически для слов, порожденных примитивными
морфизмами. С помощью этих теорем можно доказать, что для морфических
слов Штурма и эпиштурмовых слов выполняется свойство WELLDOC.
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В последнее время активно разрабатываются криптографические алгорит-
мы, основанные на неассоциативных алгебраических структурах [1]. Одной
из наиболее подходящих алгебраических структур для таких целей является
конечная квазигруппа. Известно широкое применение квазигрупп в крипто-
графии (см., например, [2]). Обобщением квазигрупп являются левые квазиг-
руппы, тернарные квазигруппы и L-квазигруппы. В работе [3] были рассмот-
рены применения тернарных квазигрупп для преобразования слов в заданном
алфавите. Аналогичные преобразования с помощью тернарных L-квазигрупп
будут приведены ниже.

Исследовательской проблемой является идентификация подходящих ква-
зигрупп для криптографических целей. В работе [4] отмечалось, что с алгеб-
раической точки зрения полиномиально полные квазигруппы подходят для
криптографии. Наряду с полиномиально полными квазигруппами в крип-
тографии можно использовать и такого же вида тернарные квазигруппы и
L-квазигруппы. В работе [3] были исследованы алгебраические свойства тер-
нарных квазигрупп, такие как полиномиальная полнота, отсутствие нетриви-
альных конгруэнций. Аналогичные исследования проведем ниже для тернар-
ных L-квазигрупп. Эти свойства могут сыграть важную роль при анализе и
проектировании криптографических схем на основе тернарных L-квазигрупп.

Предварительные сведения

Тернарный группоид 〈Q, f〉, в котором для любых элементов a, b, c из Q урав-
нение

f(x, b, c) = a (1)
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разрешимо однозначно, будем называть тернарной L-квазигруппой. На мно-
жестве Q имеется еще одна тернарная операция u, заданная по правилу

u(a, b, c) = d⇔ f(d, b, c) = a.

Операции u и f связаны тождествами

u(f(x, y, z), y, z) = x = f(u(x, y, z), y, z). (2)

Таким образом, на тернарную L-квазигруппу 〈Q, f〉 можно смотреть как на
универсальную алгебру 〈Q, f, u〉 с набором тождеств (2).

Преобразования слов

Пусть множество Q конечно и Q = {1, 2, . . . ,m}. Тернарной L-квазигруп-
пе 〈Q, f〉 соответствует 3-мерная матрица B = (bijk|i, j, k = 1, 2, . . . ,m) m-го
порядка, где bijk = f(i, j, k), причем, в силу однозначной разрешимости урав-
нения (1), в строках направления 1 стоят разные элементы из Q. Верно и об-
ратное, любая 3-мерная матрица m-го порядка B = (bijk|i, j, k = 1, 2, . . . ,m),
у которой в строках направления 1 стоят разные элементы из Q, определяет
тернарную L-квазигруппу 〈Q, f〉, где f(i, j, k) = bijk. Таким образом, меж-
ду тернарными L-квазигруппами и 3-мерными матрицами указанного вида
имеется взаимно однозначное соответствие.

Мы оцениваем число L(m; 3) тернарных L-квазигрупп порядка m:

L(m; 3) = m!m
2

.

Эта оценка указывает на большое количество тернарных L-квазигрупп, по-
строенных на конечном множестве. А значит, имеются перспективы исполь-
зования тернарных L-квазигрупп в криптографии.

Каждая 3-мерная матрица B, построенная для тернарной L-квазигруппы
〈Q, f〉, где Q = {1, 2, . . . ,m}, определяет набор из m латинских квадратов на
множестве Q с умножением i ◦k j = f(i, j, k) (k = 1, 2, . . . ,m). Таким обра-
зом, на 3-мерную матрицу B можно смотреть как на упорядоченный набор
таблиц умножения левых квазигрупп в количестве, равном числу элементов
множества Q.

Для преобразования слов в заданном алфавите используют квазигруп-
пы [5]. Мы обобщаем преобразования слов из этой работы на тернарный слу-
чай, т. е. в работе [3] было указано преобразование слов с помощью тернарных
квазигрупп, а здесь будем преобразовывать слова с помощью тернарных L-
квазигрупп. Пусть 〈Q, f〉— тернарная L-квазигруппа, где Q = {1, . . . ,m}.
Множество всех слов в алфавите Q обозначим Q+ = {x1 . . . xs|xi ∈ Q, s > 1}.
Для пары элементов a, b из Q на множестве Q+ определим отображение

Fa,b(x1x2 . . . xs) = y1y2 . . . ys =
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=


y1 = f(x1, a, b),

y2 = f(x2, y1, a),

yi+1 = f(xi+1, yi, yi−1), i = 2, 3, . . . , s− 1.

(3)

Для той же пары элементов a, b из Q на множестве Q+ строим еще одно
отображение

Ga,b(y1y2 . . . ys) = x1x2 . . . xs =

=


x1 = u(y1, a, b),

x2 = u(y2, y1, a),

xi+1 = u(yi+1, yi, yi−1), i = 2, 3, . . . , s− 1.

(4)

Теорема 1. Отображение Fa,b, построенное по правилу (3), является биек-
тивным. Отображение Ga,b, построенное по правилу (4), является обрат-
ным для отображения Fa,b.

Тернарные L-квазигруппы с левым нейтральным элементом

Элемент e тернарной L-квазигруппы 〈Q, f〉 назовем левым нейтральным эле-
ментом, если верно равенство f(e, a, a) = a для любого элемента a ∈ Q.

Теорема 2. В тернарной L-квазигруппе с левым нейтральным элементом
e верны тождества u(x, x, x) = u(y, y, y) = e. Верно и обратное, если в
тернарной L-квазигруппе верно тождество u(x, x, x) = u(y, y, y), то там
есть левый нейтральный элемент e = u(x, x, x).

Теорема 3. В тернарной L-квазигруппе с левым нейтральным элементом
имеется терм Мальцева m(x, y, z) = f(u(x, y, y), z, z).

Теорема 4. ([6]). Пусть A— конечная алгебра, содержащая по меньшей ме-
ре два элемента. Тогда следующие условия эквивалентны:
i) A полиномиально полна;
ii) существует терм Мальцева на A и алгебра A является простой и неаф-

финной.

Следствие 1. Конечная тернарная L-квазигруппа с левым нейтральным
элементом, содержащая по меньшей мере два элемента, полиномиально
полна тогда и только тогда, когда она является простой и неаффинной.
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On the invertability of finite state transducers
and its applications in cryptography

Dai Yue, Zakharov Vladimir
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In 1985 Tao Renji and Chen Shihua [1] proposed a public-key cryptosystem
based on the Mealy automata, called Finite Automaton Public-Key Cryptography
(FAPKC). The underlying idea is based on the difficulty of inverting composite
finite automata. In the simplest version of this system, the public key consists of
a composite of two finite automata, and the private key consists of their inverses.
The security of the encryption is based on the assumption that it is difficult to
invert the composite automata without knowing the private-key automata [2].
Therefore, the problem of inverting finite state machines requires close attention.

The study of this problem was first carried out in [3]. In this work, necessary
and sufficient conditions for the one-to-one computations of finite transducers
were established and an algorithm for constructing an inverse automaton was
proposed. This solution is based on the language-theoretic technique for checking
the uniquely decodability of alphabetic coding developed in [4]. The aim of our
study is to modify the method proposed in [3] by using graph constructions similar
to those used in A.A. Markov’s algorithm [5].

Definition. A deterministic finite state transducer (DFST) over an input alpha-
bet A and an output alphabet B is 4-tuple M = (S, s0, ϕ, ψ), where S is a finite
set of states, s0 ∈ S is an initial state, ϕ : S × A→ S is a transition function,
and ψ : S × A→ B∗ is an output function.

A run of a DFST M on an input word w = a1a2 . . . an is a sequence of pairs
(s0, ε), (s1, u1), . . . , (sn, un) such that si = ϕ(si−1, ai) and ui = ui−1ψ(si−1, ai)
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hold for every i, 1 6 i 6 n. A transducer M computes a function FM : A∗ → B∗

such that for every w ∈ A∗ we have FM(w) = u iff there is a run of M on w
which ends with a pair (s, u).

Without loss of generality we will assume that all states of M are reachable
from the initial state s0, i.e. for every s ∈ S there exists a run of M which ends
with a pair (s, u). By the size of a DFST M mean the size of tables by which
transition and output functions are specified.

We say that a DFST M is invertible (one-to-one transducer) iff w1 6= w2

implies FM(w1) 6= FM(w2) for every pair of input words w1 and w2. To develop an
algorithm for checking the invertability of DFSTs we follow the approach proposed
by A.A. Markov (see [5]): given a DFST M , construct a finite directed labeled
graph GM = (VM , EM) and then check certain properties of paths in GM .

Let M = (S, s0, ϕ, ψ) be a DFST. For every state s ∈ S define a set of output
words

Ls = {u : ∃ s′ ∈ S, a ∈ A, v ∈ B∗ : ϕ(s′, a) = s, ψ(s′, a) = vu}.
The vertices of graph GM are all 4-tuples of the form (s1, s2, u, σ), where
s1, s2 ∈ S, σ ∈ {1, 2} and u ∈ Ls2 if σ = 1 or u ∈ Ls1 if σ = 2. Here σ
indicates which of two states s1 or s2 is active in the vertex (s1, s2, u, σ).

Labeled arcs connect vertices of the graph GM = (VM , EM) according to the
following rules.
1. An arc leads from a vertex (s1, s2, u, 1) to a vertex (s, s2, v, 1) if there exists a

letter a ∈ A such that s = ϕ(s1, a) and u = ψ(s1, a)v; this arc is labeled with
a pair (a, ψ(s1, a)) and it is depicted as

(s1, s2, u, 1)
(a,ψ(s1,a))−→ (s, s2, v, 1).

2. An arc leads from a vertex (s1, s2, u, 1) to a vertex (s, s2, v, 2) if there exists a
letter a ∈ A such that s = ϕ(s1, a) and ψ(s1, a) = uv; this arc is labeled with
a pair (a, ψ(s1, a)) and it is depicted as

(s1, s2, u, 1)
(a,ψ(s1,a))−→ (s, s2, v, 2).

3. An arc leads from a vertex (s1, s2, u, 2) to a vertex (s1, s, v, 2) if there exists a
letter a ∈ A such that s = ϕ(s2, a) and u = ψ(s2, a)v; this arc is labeled with
a pair (a, ψ(s2, a)) and it is depicted as

(s1, s2, u, 2)
(a,ψ(s2,a))−→ (s1, s, v, 2).

4. An arc leads from a vertex (s1, s2, u, 2) to a vertex (s1, s, v, 1) if there exists a
letter a ∈ A such that s = ϕ(s2, a) and ψ(s2, a) = uv; this arc is labeled with
a pair (a, ψ(s2, a)) and it is depicted as

(s1, s2, u, 2)
(a,ψ(s2,a))−→ (s1, s, v, 1).
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There are no other arcs in the graph GM .

Theorem 1. A DFST M = (S, s0, ϕ, ψ) is not invertible iff there exists such a
state s ∈ S and such letters a, b ∈ A, a 6= b, that there exists a directed path in
the graph GM from the vertex (s, s, ε, 1) to any node of the form (s′, s′′, ε, σ), and
this path begins with two following arcs

(s, s, u, 1)
(a,ψ(s,a))−→ (ϕ(s, a), s, ψ(s, a), 2)

(b,ψ(s,b))−→ (ϕ(s, a), ϕ(s, b), u, σ).

It should be noticed that the number of vertices |VM | in the graph GM is
polynomial of the size n of M (actually, it is O(n4)). Thus, we arrive at

Corollary 1. The invertability checking problem for DFSTs is NL-complete.

One may consider computations of DFSTs on infinite input words. Denote
by Aω the set of all infinite sequences whose elements are letters from A; such
sequences are called ω-words. If u1, u2, . . . is an infinite sequence of finite words
such that ui is a proper prefix of ui+1 for every i > 1 then there exists the unique
ω-word uω = lim

i→∞
ui such that every ui is a prefix of uω. A transducerM computes

together with FM a function FM,ω : Aω → Bω such that for every wω ∈ Aω we
have FM,ω(wω) = uω iff there is an infinite run (s0, ε), (s1, u1), (s2, u2) . . . of M
on wω such that uω = lim

i→∞
ui. We say that a DFST M is ω-invertible iff w′ω 6= w′′ω

implies FM,ω(w′ω) 6= FM,ω(w′′ω) for every pair of input ω-words w′ω and w′ω.

Theorem 2. A DFST M = (S, s0, ϕ, ψ) is not ω-invertible iff there exists such
a state s ∈ S and such letters a, b ∈ A, a 6= b, that there exists a directed path
in the graph GM from the vertex (s, s, ε, 1) to any node of the form (s′, s′′, ε, σ)
which belongs to some strongly connected component of GM , and this path begins
with two following arcs

(s, s, u, 1)
(a,ψ(s,a))−→ (ϕ(s, a), s, ψ(s, a), 2)

(b,ψ(s,b))−→ (ϕ(s, a), ϕ(s, b), u, σ).

Corollary 2. The ω-invertability checking problem for DFSTs is NL-complete.

Thus, we show that graph-theoretic approach proposed by A.A. Markov makes
it possible to check efficiently unique decodability property not only for alphabetic
codings but for automata codings as well.
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On the equivalence checking problem for tree
finite state automata
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Our research focuses on top-down finite state tree automata (FTA), whose
syntax and semantics are defined formally in on-line textbook TATA [1] as follows.

Definition. Let F be a finite set of functional symbols, and every f ∈ F has some
arity k>0. A top-down finite tree automaton (FTA) is a 4-tuple A=(Q,F , I,∆),
where Q is a finite set of states, I ⊆ Q is a set of initial states, and ∆ is a set
of transition rules of the following type:

(q, f)→ f(q1, q2, . . . , qk), (1)

where k > 0, f ∈ Fk, and q, q1, q2, . . . , qk ∈ Q.

We denote by ∆(A, q) the set of all transition rules (1) from a state q of an FTA
A. An FTA A is deterministic (DFTA) if there is only one initial state and no
two rules have the same left-hand side. By the size of an FTA A we mean the
total number of letters in its transition rules.

FTAs operate on terms — finite trees whose nodes are marked with symbols
in F . A transition rule (1) means that whenever an FTA A at a state q observes
a node marked with f , the copies of this FTA at the states q1, q2, . . . , qk move
to the successors of this node. When f is a constant symbol of arity k = 0, a
transition rule (q, f) → f is called terminating : it fires when an FTA reaches a
leaf node of an input tree marked with a constant f . An FTA A accepts a term t
when it starts its run at the root of the tree and finally terminating rules fire at
all leaves of t.

A collection of tree languages LA(q) accepted at various states q ∈ Q of an
TFA A can be specified as the least solution of the following system of equations

LA(q) =
⋃

δ∈∆(A,q)

{f(LA(q1), LA(q2), . . . , LA(qk)) | δ : (q, f)→ f(q1, q2, . . . , qk)}.

Two states q and p are called equivalent iff LA(q) = LA(p). This paper presents an
efficient equivalence checking algorithm for top-down DFTAs. This algorithm is
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based on the approach proposed in [2, 3]; it allows one to build efficient equivalence
checking algorithms for various types of finite state machines by reducing the
problem of checking the equivalence of automata to checking the solvability of
systems of language-theoretic equations.

The equivalence checking algorithm for top-down DFTAs presented in this ar-
ticle is divided into two main stages: constructing a system of equations which
define the problem of testing the equivalence LA(q) = LA(p), and checking the
solvability of this system.
Stage 1. Constructing the system of equations. Suppose that we have

a top-down DFTA A = (Q,F , I,∆). Without loss of generality we will assume
that LA(q) 6= ∅ for every state q ∈ Q. Our goal is to check the equivalence of a
pair of states q′ and q′′ of A. To this end we associate a variable Xq with each
state q ∈ Q of A , and a term tδ = f(Xq1, . . . , Xqk) with every transition rule δ
of the form (1). Then the system of equations E0 required for our purpose is as
follows:

E0 = {Xq =
∑

δ∈∆(A,q)

tδ : q ∈ Q} ∪ {Xq′ = Xq′′}.

Stage 2. Checking the solvability of the equation system E0 . The
algorithm iteratively applies the following series of steps to the systems of equa-
tions, starting with E0 constructed at the Stage 1. Suppose that after the i-th
iteration, i > 0, we have a system of equations Ei.
1. Termination detection. If there are no equations of the form Xp = Xq in Ei

then the algorithm stops and outputs an answer: q′ and q′′ are equivalent states
of A.

2. Substitution. Otherwise, for every equation of the form Xp = Xq in Ei replace
all occurrences of the variable Xp in the equations of Ei with the variable Xq

and remove the equation Xp = Xq from Ei.
3. Conflict detection. If there are two equations with the same left-hand side

(say, Xq) such that one of them contains some functional symbol (say, f) in
its right-hand side, whereas the other does not, then the algorithm stops and
outputs an answer: q′ and q′′ are not equivalent states of A.

4. Restoration. Otherwise, for every pair of equations with the same left-hand
side (say, Xq) of the form

Xq =
∑

f(Xq1, . . . , Xqk), (2)

Xq =
∑

f(Xp1, . . . , Xpk), (3)
and for every functional symbol that appears in their right-hand sides (say, f)
add equations

Xq1 = Xp1, . . . , Xqk = Xpk
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to the system and afterwards remove from the system one of the equations (2)
or (3). Denote by Ei+1 the system of equations obtained thus, and this is where
the iteration i of the algorithm ends.

Theorem 1. For every top-down DFTA A = (Q,F , I,∆) and a pair of its states
q′ and q′′ the algorithm specified above always terminates and correctly recognizes
the equivalence of q′ and q′′ in time O(n2) where n is the size of A.

Proof. (Sketch) The size of the initial system E0 is the same as the size of an
DFTAA. After every step of the algorithm the triple (n1, n2, n3) lexicographically
decreases, where n1 is the number of variables, n2 is the number of equations
with non-variable right-hand side, and n3 is the total number of equations in the
system. Therefore, the algorithm always terminates.

The following four considerations confirm the correctness of the algorithm.
1. The system E0 has a solution (actually, it is Xq = LA(q) for every q ∈ Q) iff

the states q′ and q′′ are equivalent.
2. The transformations of the systems of equations at every step of the algorithm

preserve their solvability.
3. A system of equation which satisfies the termination detection condition always

has a solution.
4. A system of equation which satisfies the conflict detection condition does not

have a solution.
Time complexity of the algorithm is estimated in the framework of computa-

tional model RAM with pointers. As it can be seen from the description of the
algorithm, the number of its iterations does not exceed the number of states |Q|
of DFTA. The number of actions at each step of the algorithm does not exceed
the size of the systems Ei which decreases monotonically.
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Set multicover problem is a natural generalization of the well-known set cover
problem: given a finite set and a family of its subsets find a minimal subfamily
of subsets which covers the set; in the case of set multicover some elements must
be covered several times.

Let U be a finite set. A multiset is any function M : U → {0, 1, 2, . . . }. A
value M(e) can be viewed as the number of occurrences (copies) of an element
e in a multiset M . A domain D is such a multiset that D(e) 6 1 holds for
every e ∈ U . A family is any finite collection of domains S = {D1, . . . , Dm}.
Set-theoretic relations and operations are extended to multisets as follows:
1) e ∈ M ⇐⇒ M(e) > 0, 2) M1 ⊆ M2 ⇐⇒ M1(e) 6 M2(e) for every e ∈ U ,
3) M1 ∪M2 = M1 + M2, 4) M1 ∩M2 = min(M1,M2), 5) M1 \M2 = M1 −M2,
where M1(e)−M2(e) = 0 if M1(e) < M2(e). A set multicover problem is a pair
(M,S), where M is a multiset and S is a family. A family S ′ which is a subset
of S is a multicover of (M,S) iff M ⊆

⋃
D∈S′D, and it is a solution to (M,S)

if S ′ is a minimal multicover. A set cover problem is a variant of set multicover
problem (D,S) when D is a domain.

Since set multucover problem is similar to set cover problem, many results,
techniques and algorithms developed for the latter can be easily adapted to the
former. Both problems are NP-complete [1], admit simple reduction to integer
programming problem, and their approximate solutions can be obtained by means
of greedy algorithms. Therefore, the study of set multicover problem has mainly
been limited to analyzing efficiency and accuracy of various approximation algo-
rithms [2–4]. Meanwhile, we show that the difference between these two covering
problems is more substantial, and it affects considerably the applicability and
efficiency of some common approaches to these problems.

Some distinctions between set cover and set multicover problems are obvious.
1. A domain D′ in a family S is called maximal if it is not included in any other

domain, i. e. D′′ ∈ S,D′′ 6= D′ =⇒ D′ 6⊆ D′′. It is well known that any
set cover problem (D,S) has a solution S ′ which consists of maximal domains
only. This consideration is not true in general for multicover problems, and we
can not simplify (M,S) by deleting all non-maximal domains from S.

2. If D is a (set-theoretic) union of two domains D′ and D′′ then any solution
S0 to set cover problems (D′, S) and (D′′, S) is always a solution to (D,S).
But this is not the case when multisets are concerned: a multicover S0 of both
(M ′, S) and (M ′′, S) is not necessarily a multicover of (M ′ ∪M ′′, S).
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3. A multicover S ′ of (M,S) is called reduced if any proper subfamily S ′′ of S ′ is
not a cover of (M,S). Denote byRed(M,S) the collection of reduced multicov-
ers of (M,S). To solve covering problem, one can use the following approach,
which originates from the solution of the DNF minimization problem. Given
a multicover problem (M,S), one may compute two families ΠRed(M,S) and
ΣRed(M,S). The former includes the domains which appear in all reduced
multicovers of (M,S), and the latter consists of the domains which occur in at
least one reduced multicover of (M,S). Then any solution S ′ to a multicover
problem (M \

⋃
D∈ΠRed(M,S)D,ΣRed(M,S) \ ΠRed(M,S)) gives a solution

S ′′ = S ′ ∪ ΠRed(M,S) to the multicover problem (M,S). If the families
ΠRed(M,S) and ΣRed(M,S) can be computed efficiently (as it is for set
cover problem) then this approach can alleviate considerably the computation
of solutions to (M,S).
For every family S denote byMS a multiset

⋃
D∈SD. The following statements

hold for every multicover problem (M,S).

Theorem 1. A multicover S ′ of (M,S) is reduced iff for every domain D ∈ S ′
there exists such an element e ∈ D that M(e) = MS′(e).

Theorem 2. A domain D belongs to ΠRed(M,S) iff D ∈ S and there exists
such an element e ∈ D that M(e) = MS(e).

Clearly, both reduction checking and membership checking for ΠRed(M,S) can
be performed in linear time (when M and S are specified explicitly), and, there-
fore, the family ΠRed(M,S) can be computed efficiently (by local algorithms, in
terms of [5]). However, this cannot be said about ΣRed(M,S).

Consider a family S = {D1, D2, . . . , Dn} and let an element e ∈ M is such
that e ∈ Di1, e ∈ Di2, . . . , e ∈ Dik and e /∈ Dik+1

, . . . , e /∈ Din. Let also
Ŝe = {Di2, . . . , Dik} and M̂e = M \ (Di1 ∪ Dik+1

∪ . . . ,∪Din). Then we say
that e is a loose element of a domain Di1 w.r.t. (M,S) iff the multicover problem
(M̂e, Ŝe) has a solution of the size greater than or equal to M(e).

Theorem 3. A domain D does not belong to ΣRed(M,S) iff every element e ∈ D
is a loose element of D w.r.t. (M,S).

As it can be seen from the definition above, checking the looseness property
has the same complexity as a decision variant of multicover problem: check that
the size of all multicovers of (M,S) are greater than or equal to d.

Corollary 1. The membership problem D ∈ ΣRed(M,S) is NP-complete.

Thus, unlike the case of set cover problem, when multisets are concern we have
no means for computing the family ΣRed(M,S) in polynomial time, and this is
another aspect, where set covering and set multicovering differ.
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Decision problems for parameterized weakly
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The authors of [1] showed that the complexity of decision-making problems
for regular expressions increases significantly when parameters are allowed to be
used in such expressions along with letters. However, in regular expressions it
is not possible to separate deterministic from non-deterministic computations.
Therefore, in [2] we investigated a parameterized version of the synchronous finite
state transducers, in which parameterization is allowed only for outputs. Synchro-
nization implies that for each input signal the machine necessarily produces some
response at the output. We found that for deterministic synchronous transducers,
the presence of parameters does not have such a large impact on the complexity
of decision problems. However, this computational model does not cover all appli-
cations where data parameterization can be used, and we continued our research
by expanding the capabilities of the model. In the new computation model, tran-
sitions are allowed on which the automaton does not produce any output signals;
in this case the length of the output word may be less than the length of the input
word. We called this type of transducers weakly synchronous. This paper presents
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the results of our study of the most important decision problems for deterministic
and nondeterministic weakly synchronous automata.

A Parameterized Weakly Synchronous Finite State Transducer (PWFST for
short) over an input alphabet Σ and an output alphabet ∆ is such a transition
system Π = 〈Q, q0, F,X ,−→〉, where Q is a finite set of states, q0 is an initial
state, F ⊆ Q is a subset of final states, X is an an infinite set of variables
disjoint with both alphabets Σ and ∆ and −→ is a transition relation of the type
Q× Σ× (∆ ∪ X ∪ {ε})×Q. Quadruples (q, a, b, q′) ∈−→ are called transitions

and depicted as q
a/b−→ q′. A PWFST Π is deterministic (Det-PWFST) if for

every state q ∈ Q and a letter a ∈ Σ there are no different transtions q
a/z1−→ q′

and q
a/z2−→ q′′ in Π.

A run of Π is any finite sequence of transitions q0
a1/b1−→ q1

a2/b2−→ · · · an/bn−→ qn, where
qn ∈ F . Such run is denoted as q0

u/w−→∗ qn, where u = a1a2 . . . an, w = b1b2 . . . bn.
Since the empty symbol ε may appear in transitions of PWFSTs, the length of an
input word u in a run q0

u/w−→∗ qn may exceed the length of an output string w.
When a transition relation −→ is of the type Q×Σ× (∆∪{ε})×Q (there are

no variables in transitions) such a transducer is called Weakly Synchronous Finite
State Transducer (WFST for short). Any WFST π computes a transduction

relation TR(π) = {(u,w) : there exists a run q0
u/w−→∗ qn of π} on Σ×∆. Most

decision problems on transducers concern the properties of transduction relation.
A function θ : X → ∆ is called a ground substitution. The set of all ground

substitutions is denoted by GSubst. Applying a substitution θ to a PWFST Π
results in an WFST Πθ in which every occurrence of any variable x in the tran-
sitions of Π is replaced by an output letter θ(x). In this case a WFST π = Πθ
is called an instance of Π. Thus, each PWFST Π generates a whole family of
WFSTs F(Π) = {Πθ : θ ∈ Gsubst}, and all typical decision problems for check-
ing certain properties (like non-emptiness, functionality, 2-valuness) or relations
(like equivalence, bisimilarity) on WFSTs can be quite naturally addressed to
PWFSTs as well. These decision problems can be specified by unary or binary
predicates of the form P (Π) or R(Π1,Π2) and they have dual presentation, but
due to space limitation in this paper only existential variants of these problems
are considered: given a PWFST Π or a pair of PWFSTs Π′,Π′′ check the predi-
cates ∃θ ∈ GSubst : P (Πθ) or ∃θ′, θ′′ ∈ GSubst : R(Π′θ′,Π′′θ′′). In what follows
we denote by n the number of states |Q| and by m the number of transitions −→
in a PWFST.

1. Membership: given an WFST π and a pair of words (u,w) ∈ Σ∗×∆∗, check
(u,w) ∈ TR(π).
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Statement 1. The ∃-membership problem is NP-complete for PWFSTs, L-
complete and can be decided in time O(n)for Det-PWFSTs.

2. Nonemptiness: given an WFST π, check TR(π) 6= ∅.
Statement 2. The ∃-nonemptiness problem is NL-complete for both PWFSTs
and Det-PWFSTs, and can be decided in time O(n log n).

3. Functionality: given an WFST π, check if TR(π) is a (partial) function
TR(π) : Σ∗ → ∆∗.

Statement 3. The ∃-functionality is NL-complete for PWFSTs and can be
decided in time O(m3 logm).

4. k-valuedness: given an FST π, check if for every input word u ∈ Σ∗ it is true
that |{w : (u,w) ∈ TR(π)}| 6 k.

Statement 4. The ∃-k-valuedness is NP-complete for PWFSTs.

5. Equivalence: given a pair of WFSTs π1, π2, check TR(π1) = TR(π2).

Statement 5. The ∃-equivalence problem is PSPACE-complete for PWFSTs,
NL-complete and can be decided in time O(m3 logm) for Det-PWFSTs.

6. Minimization: given an WFST π and an integer k, check if there exists such
an FST TR(π′) that TR(π) = TR(π′) and size(π′) 6 k.

Statement 6. The ∃-minimization problem is is PSPACE-complete for PWF-
STs and NP-complete for Det-PWFSTs.

7. Problem Bisimulation: given a pair of WFSTs π1, π2, check if π1 and π2 are
bisimilar.

Statement 7. The ∃-bisimulation problem is is NP-complete for PWFSTs.

The results obtained are collected in the table below. As comparing with the
complexity of decision problems for WFSTs, one may see that parametrization
affects significantly such problems as Membership, k-valuedness, and Bisimulation
for nondeterministic transducers, and Minimization for deterministic transducers,
but there are also cases when designing of efficient algorithms is possible even in
the presence of parameters in transitions of automata.
References
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Table 1: Complexity of decision problems for PFSTs and PWFSTs

Problems WFSTs PWFSTs

Non-Det Det Time Non-Det Det Time

Membership L NL O(n) L NP O(n)

Nonemptiness NL NL O(n log n) NL NL O(n log n)

Functionality NL — O(m2 log n) NL — O(m3 log n)

k-valuednes NL — O(m2 log n) NP — —

Equivalence PSPACE NL O(n log n) PSPACE NL O(n3 log n)

Minimization PSPACE NL O(n log n) PSPACE NP —

Bisimulation P — O(m2 log n) NP — —

An LTS-based semantics of improved variant of
Real-Time Finite State Machines

Zhang Yao, Zakharov Vladimir
Shenzhen MSU-BIT University; 2120230008@smbu.edu.cn, zakh@cs.msu.ru

The concept of real-time finite state machines (TFSMs) appeared explicitly
in [1] as an attempt to adapt timed automata [2] to modeling simple reactive
systems and to avoid the undecidability of most decision problems inherent in
general timed automata. TFSM can be viewed as a kind of Mealy automaton,
in which the firing of a transition depends not only on an input signal, but also
on the time of its appearance, and responses are not given immediately, but with
some delay. Further research [3, 4] showed that the most important algorithmic
problems for TFSMs can be reduced to those for conventional finite state au-
tomata and this turned out to be a significant advantage of the proposed model.
Meanwhile, the original version of the TFSM model has a significant drawback:
the output signals that the machine generates follow, regardless of the time of
their appearance, in the same order in which the input signals were received. As
a result, the computations of TFSM do not fully correspond to the observed be-
havior of the simulated system. To correct this deficiency, an improved version of
the TFSM model was proposed in [5]. However, the operational semantics of the
improved model was defined in [5] implicitly and did not allow the application of
well-known model checking means to TFSMs of the new type. The purpose of
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this paper is to eliminate this drawback and present an explicit description of the
semantics of TFSM based on labeled transition systems.

Let <+ denote the set of all positive reals, and <+
0 = <+ ∪ {0}. A timed

letter is any pair (x, t), where x is a letter, and t ∈ <+
0 . A timed word is any

sequence γ = (x1, t1), (x2, t2), . . . , (xn, tn) of timed letters such that t1, t2, . . . , tn
is a non-decreasing sequence of reals. Given a set of timed letters P we denote
by order(P ) a timed word which is composed of all elements of P . A guard is an
interval of the type (u, v], where u, v ∈ <+

0 and u < v.
A Real-Time Finite State Machines (RTFSM) over an input alphabet A and

an output alphabet B is a quadruple M = (S, sin, G, ρ), where S is a nonempty
set of control states, sin ∈ S is an initial state, G is a set of guards, and
ρ ⊆ (S × I × O × S × G × <+) is a finite set of actions. Every action
(s, a, b, s′, g, d) ∈ ρ means that whenever a RTFSM is at a control state s and
receives an input signal a at time t assuming that the previous input signal has
been received at time t′ such that t− t′ ∈ g then RTFSM moves to a control state
s′ and outputs a response b at time t+ d.

A run of RTFSM M is any sequence of moves

tr=(s0,a1,b1,s1,(u1,v1],d1),(s1,a2,b2,s2,(u2,v2],d2),. . . ,(sn−1,an,bn,sn,(un,vn],dn).
(1)

A run (1) responds to an input timed word α = (a1, t1), (a2, t2), . . . , (an, tn) with
an output timed word β = order({(b1, t1 + d1), (b2, t2 + d2), . . . , (bn, tn + dn)}) if
the conditions tj − tj−1 ∈ (uj, vj] hold for all j, 1 6 j 6 n, assuming that t0 = 0.

For every RTFSM M = (S, sin, G, ρ) we define a Labeled Transition System
(LTS) L(M) = (Q, q0,→), where Q = S × <+

0 × <+
0 × 2O×<

+
0 ) is a set of config-

urations, (sin, 0, 0,∅) is the initial configuration, and

→⊆ (Q× τ ×Q) ∪ (Q× (I ×<+)×Q) ∪ (Q× (O ×<+)×Q)

is a transition relation.
A transition relation → of an LTS L(M) conforms 3 rules for every configura-

tion q = (s, T0, T1, B):
— advancement of time: for every t′ ∈ <+ such that t′ 6 min(t : (y, t) ∈ B)

there exists a transition (s, T0, T1, B)
τ→ (s, T0 + t′, T1 + t′, B − t′);

— input move: for every action (s, x, y, (u, v], d) in RTFSM M for which

u<T16v holds there is a transition (s, T0, T1, B)
(x,T0)→ (s′, T0, 0, B∪{(y, d)});

— output move: for every timed output letter (y, 0) ∈ B there is a transition

(s, T0, T1, B)
(y,T0)→ (s, T0, T1, B \ {(y, 0)}).

A trace of RTFSM M is any sequence of transitions in LTS L(M):

tr = (sin, 0, 0,∅)
r1→ (s1, t1, t

′
1, B1)

r2→ (s2, t2, t
′
2, B2)

r3→ . . .
rn→ (sn, tn, t

′
n, Bn).

(2)



186 Zhang Yao, Zakharov V.

A sequence h(tr) = r1, r2, r3, . . . , rn of symbols τ and timed letters is a history of
the trace (2). The maximal subsequence of h(tr) which consists of timed input
(output) letters is called an input (respectively, output) history of a trace (2).
A trace (2) is called exhaustive if Bn = ∅. A configuration q = (s, T, t, B) is
called reachable in LTS L(M), if there exists a trace which ends with q. If q is
an exhaustive configuration then such a trace is also exhaustive.

Statement 1. For every RTFSM M , for every configuration q = (s, T0, T1, B)
reachable in LTS L(M), and for every timed letter (y, t) ∈ B it is true that
T1 6 T0 and 0 6 t.

Statement 2. For every RTFSM M there exists such T ∈ <+ that for every
configuration q = (s, T0, T1, B) reachable in LTS L(M) and for every timed letter
(y, t) ∈ B it is true that t 6 T .

Statement 3. For every RTFSM M , for every timed input word α and output
word β, if there is a run of RTFSM M on α which outputs β, then there is an
exhaustive trace in LTS L(M)with an input history α and output history β.

Statement 4. For every RTFSM M , every timed input word α and output word
β, if there is an exhaustive trace in LTS L(M)with an input history α and output
history β, then there is a run of RTFSM M on α which outputs β.

A configuration q = (s, T0, T1, {(y1, t1), . . . , (yk, tk)}) is called integral if all
numbers T0, T1, t1, . . . , tk are integers. Two configurations q′ = (s′, T ′0, T

′
1, B

′) and
q′′ = (s′′, T ′′0 , T

′′
1 , B

′′) are called equivalent if s′ = s′′, T ′1 = T ′′1 , B
′ = B′′.

Statement 5. For every RTFSM M the equivalence relation is a bisimulation
relation on the set of configurations of LTS L(M), and the subset of reachable
integral configurations can be partitioned on finitely many classes of equivalence.

Statements 3 and 4 show that the operational semantics of RTFSM based on
LTS captures the concept of computation of this model defined in [5] and can thus
be used to reason about the behavior of RTFSMs. Moreover, as it follows from
Statement 5, when timestamps in the input timed words and the delays in the
actions of RTFSM M are integers (which is the case in many applications), an
LTS L(M) can be compressed to a finite state transition system which captures
the runs ofM . This consideration opens the way for developing efficient synthesis
and analysis algorithms for an improved version of real-time finite state machines.
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Тезисы постерных докладов
Алгоритм построения оптимальной

ограниченной по диаметру и степеням
вершин заполняющей топологии

Есипова Дарья Владимировна
Московский государственный университет имени М.В. Ломоносова; daria2002yes@gmail.com

Заполняющая топология является одним из элементов маршрутизации в
компьютерных сетях. Она используется для определения пути передачи дан-
ных в сети, когда точные маршруты неизвестны или когда требуется доставка
данных всем узлам в сети. Использование такой топологии позволяет значи-
тельно снизить нагрузку на сеть.

Пусть V —набор узлов, которые представляют маршрутизаторы исходной
сети, E = {(u, v)|u ∈ V, v ∈ V, u 6= v}—набор рёбер, которые представля-
ют соединения между узлами сети, w(e) : E → R— весовая характеристика.
G = (V,E) —неориентированный взвешенный связный граф, моделирующий
исходную сеть. Тогда ∆-заполняющей топологией графа G является остов-
ный подграф G′ = (V,E ′), E ′ ⊂ E, удовлетворяющий ограничениям:
1. ∀v, v ∈ G′, deg(v) 6 ∆, где deg(v) — степень вершины.
2. G′—рёберно 2-связный граф.

Диаметр заполняющей топологии D(G) — это максимальное значение
кратчайшего расстояния между парами вершин в G. Вес заполняющей то-
пологии W (G) — сумма весов всех рёбер топологии. Заполняющая тополо-
гия G′ ⊆ G называется оптимальной, если не существует другой топологии
G′′ ⊆ G, такой что W (G′′) 6 W (G′) и D(G′′) 6 D(G′), и при этом хотя бы
одно из указанных неравенств выполняется строго.

В данной работе разработан алгоритм, основанный на алгоритме Краска-
ла, находящий близкую к оптимальной ∆-заполняющую топологию, показав-
ший лучшие результаты при сравнении на топологиях fat-tree и spine-leaf с
алгоритмами из статьи [1], берущими за основу алгоритм Прима. В статье [2]
доказана NP-полнота задачи о минимальном заполняющем дереве, что гово-
рит об алгоритмической трудности задачи, даже в таких простых случаях,
когда под топологией понимается дерево.
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Алгоритм распознавания эмоций на основе
линейной регрессии
Ковалёва Елена Сергеевна

Московский государственный университет имени М.В. Ломоносова; e.kovaleva.msu@yandex.ru

В докладе предлагается эффективный метод распознавания эмоций на ос-
нове линейной регрессии с применением ключевых точек из двух нейронных
сетей MediaPipe и Dlib, из которых были взяты наиболее точно расположен-
ные ключевые точки.

Введение

Распознавание эмоций по лицевым изображениям является важной задачей в
области искусственного интеллекта и компьютерного зрения. Разработанный
алгоритм использует сочетание линейной регрессии для обработки призна-
ков лица и нейронные сети из библиотек MediaPipe и Dlib для улучшения
точности и эффективности распознавания эмоций.

Линейная регрессия для распознавания эмоций

Линейная регрессия используется для создания модели, которая предсказы-
вает эмоциональные состояния на основе координат ключевых точек лица
(глаза, рот, брови). Этот подход эффективен для базового распознавания
эмоций, таких как счастье, грусть или удивление, благодаря своей просто-
те и быстроте вычислений.

Использование MediaPipe и Dlib

— MediaPipe: библиотека, предоставляющая предобученные модели для де-
тектирования ключевых точек лица и анализа позы. Используется для
быстрого и точного извлечения характеристик лица.

— Dlib: библиотека, которая применяется для точной локализации лицевых
маркеров и дополнительных признаков. Сочетание Dlib с MediaPipe поз-
воляет улучшить точность распознавания за счет интеграции данных с
различных моделей.
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Совмещение подходов

Предложенный алгоритм объединяет данные, полученные из MediaPipe и
Dlib, с результатами линейной регрессии. Это позволяет использовать как
простые математические модели для предсказания эмоций, так и более слож-
ные нейронные сети для повышения точности и устойчивости к различным
внешним факторам, таким как изменение освещения или угла наклона лица.

Преимущества предложенного алгоритма

— Быстрота обработки за счет применения линейной регрессии.
— Высокая точность распознавания эмоций благодаря использованию сетей

MediaPipe и Dlib.

Заключение

Алгоритм распознавания эмоций, основанный на линейной регрессии и инте-
грации нейронных сетей MediaPipe и Dlib, демонстрирует высокую эффек-
тивность. Будущие исследования будут направлены на улучшение модели за
счет расширения набора эмоциональных состояний и применения более слож-
ных моделей регрессии.

Контурирование областей на изображениях
лиц методом кластеризации пикселей

Ковалёва Елена Сергеевна
Московский государственный университет имени М.В. Ломоносова; e.kovaleva.msu@yandex.ru

В докладе предлагается эффективный метод кластеризации пикселей для
контурирования областей на изображениях лиц, с помощью которого воз-
можно более точно идентифицировать объекты лица (области глаз, носа, рта,
овала лица, бровей и другие).

Введение

Контурирование областей основных объектов на изображениях лиц являет-
ся важной задачей в областях искусственного интеллекта и компьютерного
зрения. В докладе представлен новый детерминированный алгоритм класте-
ризации, позволяющий выделять области ключевых элементов лица на изоб-
ражениях без применения нейронных сетей.
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Идея алгоритма

Идея алгоритма основана на математическом анализе цветовых расстояний
между соседними пикселями относительно малых и больших областей.

Преимущества предложенного алгоритма

— Высокая скорость обработки.
— Устойчивость к изменениям освещения.

Заключение

Алгоритм контурирования областей лица демонстрирует высокую точность.
Будущие исследования будут направлены на детекцию ключевых точек на
основных объектах лица.

О групповой сложности бесконечных слов
Лаунер Максим Вячеславович

Санкт-Петербургский государственный университет; mlauner_official@bk.ru

Словом называется последовательность символов — элементов конечного
множества, называемого алфавитом. Фактором слова называется подпосле-
довательность подряд идущих символов. Комбинаторная сложность беско-
нечного слова w— это функция, которая сопоставляет натуральному числу n
число различных факторов данного слова длины n. У этого понятия сложно-
сти существует ряд обобщений, например, абелева сложность. Два конечных
слова называются абелево эквивалентными, если одно получается из друго-
го какой-либо перестановкой символов. Соответственно, абелева сложность
считает только число классов абелевой эквивалентности факторов длины n.

В работе [1] Шарлье, Пузынина и Замбони ввели понятие групповой слож-
ности бесконечных слов. Рассмотрим последовательность (G1, G2, G3, . . . ),
подгрупп Gk симметрических групп Sk; группа Gk действует на строках дли-
ны k естественным образом— перестановкой символов. Групповая сложность,
соответствующая этой последовательности — это функция, сопоставляющая
длине фактора n число различных классов групповой эквивалентности; здесь
два фактора u и v длины k считаются эквивалентными, если существует эле-
мент g ∈ Gk, такой что gu = v. Понятие групповой сложности обобщает
понятия комбинаторной и абелевой сложностей слов. Несложно понять, что
групповая сложность не меньше абелевой сложности и не больше комбина-
торной. Возникает естественный вопрос: для каких слов существует набор
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групп, позволяющий получить все значения групповой сложности между абе-
левой сложностью и комбинаторной? В дипломной работе Е.А. Волошиновой
показано, что для слов Штурма такое свойство выполнено.

В этой работе найден класс двоичных слов, связанный со словами Штур-
ма, для которых также выполнено исследуемое свойство. Кроме того, найден
класс тернарных слов, для которых можно получить все сложности для дли-
ны n > 3. Изучены возможные значения групповой сложности для тернарных
слов минимальной сложности, классифицированных в работах [2, 3].

Список литературы
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Свойства многочленов двухполюсных
вероятностных контактных схем

Порошин Богдан Алексеевич
Московский государственный университет имени М.В. Ломоносова; poroshin.bogdan@mail.ru

Данная работа посвящена изучению двухполюсных вероятностных кон-
тактных схем в качестве преобразователей дискретных вероятностных рас-
пределений. Отметим, что вероятностные контактные схемы задают преоб-
разования случайных величин в виде полиномов от этих вероятностей. Мы
называем эти полиномы многочленами вероятности схем. Одним из первых
вероятностные контактные схемы рассматривал К. Шеннон [1] в задаче о
надежных схемах из ненадежных элементов. Затем вероятностные контакт-
ные схемы рассматривались с точки зрения задачи выразимости вероятност-
ных распределений в работах Р.Л. Схиртладзе [2, 3], Ф.И. Салимова (напри-
мер, [4]) и Р.М. Колпакова (например, [5]).

В данной работе рассматриваются многочлены, выражающие вероятности,
реализуемые вероятностными контактными схемами. Изучаются некоторые
свойства многочленов вероятности схем. Получены утверждения, описыва-
ющие связь между некоторыми из коэффициентов многочлена вероятности
схемы и топологической структурой схемы. В частности, первая производная
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многочлена вероятности схемы в точке 0 равна числу рёбер, соединяющих по-
люса схемы напрямую, а в точке 1 — числу рёбер, размыкающих данную схе-
му. Получено следствие из работы К. Шеннона [1], позволяющее при наличии
информации о значениях производной многочлена вероятности схемы в точ-
ках 0 и 1 дать нижнюю и верхнюю оценку его значениям на интервале (0, 1).
Также исследуются многочлены вероятности параллельно-последовательных
схем (далее π-схем). Мы называем π-подсхемой данной π-схемы любой под-
граф этой схемы, являющийся π-схемой с теми же полюсами. Для π-схем
предложено их описание в терминах схем из функциональных элементов в
базисе {&,∨}, а также получен результат, позволяющий дать полное опреде-
ление всех коэффициентов многочлена вероятности такой схемы посредством
множества всех π-подсхем данной схемы.
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Метод сведения задачи логического синтеза
оптимальных по динамической и

статической активности схем к задаче
выполнимости булевых формул

Фаизов Алексей Игоревич
Московский государственный университет имени М.В. Ломоносова; alexfaizov18@gmail.com

Одной из важных задач при моделировании интегральных схем является
задача точного логического синтеза. Она сосредоточена на построении схем,
оптимальных по некоторым функционалам сложности. В докладе рассмат-
риваются статическая и динамическая активность, которые характеризуют
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энергопотребление схемы, связанное с высокими значениями напряжения и
изменением напряжения в узлах схемы соответственно.

В [1] были обобщены и систематизированы подходы к решению задачи
точного синтеза. В работе рассматривается решение на основе задачи выпол-
нимости булевых формул (ВЫП). Метод заключается в кодировании набора
условий искомой схемы булевой формулой в виде КНФ. Популярность та-
кого подхода обусловлена развитием алгоритмов решения задачи ВЫП [2] и
гибкостью кодирования различных типов схем в виде булевых формул. В [3]
был проведен обзор существующих способов выражения начального условия,
определенного относительно параметра сложности схемы, в терминах КНФ.

В рамках доклада предложены модификации представленных в [3] мето-
дов для формулирования задачи синтеза относительно функционалов стати-
ческой и динамической активности. Критерием для оценки эффективности
подходов является значение длины КНФ, кодирующей необходимые условия
синтеза схемы. Доказаны оценки длины КНФ, реализуемых исходными ме-
тодами, а также их модификациями. Cформулирована задача многокрите-
риальной оптимизации относительно функционалов размера и активности
схемы. Изложенные модификации позволяют получить множество Парето-
оптимальных решений задачи точного синтеза комбинационных схем.
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Информация о прочитанных
пленарных докладах
Галатенко Алексей Владимирович (Москва).
О некоторых свойствах конечных квазигрупп.

Конечные квазигруппы являются перспективной платформой для реализа-
ции различных криптоалгоритмов. Для обеспечения стойкости на квазигруп-
пы накладывается ряд требований. В.А. Артамонов предложил использовать
полиномиально полные квазигруппы (то есть такие, что квазигрупповая опе-
рация и множество всех констант порождают с помощью суперпозиции все
функции) без собственных подквазигрупп. В докладе приведён критерий по-
линомиальной полноты, проанализирована типичность свойств полиномиаль-
ной полноты и отсутствия собственных подквазигрупп, рассмотрены методы
построения полиномиально полных квазигрупп без подквазигрупп, оценена
сложность распознавания соответствующих свойств; в заключение обсуждён
перенос результатов на случай n-арных обобщений квазигрупп— конечных n-
квазигрупп.

Евдокимов Александр Андреевич (Новосибирск).
Структурированное кодирование информации и вложения дискретных
метрических пространств и графов в классе отображений ограниченного
искажения.

В докладе рассказано и продолжено развитие идеи кодирования информа-
ции с сохранением в кодовом пространстве структурных свойств кодируемых
объектов и возможности использования структурированного кодирования ин-
формации для её быстрой и эффективной обработки. Рассмотрены вариации
свойств и типов отображений, в классе которых определяются вложения,
сохраняющие структурные свойства дискретных метрический пространств,
графов, упорядоченных множеств. Приведены задачи, в которых сохранение
структуры кодируемых объектов сочетается со свойствами параметрической
отделимости и помехоустойчивости кодирования. В частности, на примере
кодирования табло (целочисленной решётки) и алгоритма его вложения в
гиперкуб с помощью описания задачи в терминах комбинаторики слов с за-
претами.

Кочергин Вадим Васильевич, Михайлович Анна Витальевна
(Москва).
Схемная сложность булевых функций над бесконечными базисами. Точное
значение сложности для одного базиса.

В докладе дан обзор известных результатов о сложности реализации буле-
вых функций схемами над бесконечными базисами и представлен результат
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авторов, установивших для произвольной булевой функции точное значение
схемной сложности при реализации над бесконечным базисом, состоящем из
всех монотонных булевых функций и отрицания.

Малышев Дмитрий Сергеевич, Каймаков Кирилл Владимирович
(Нижний Новгород).
Эффективный онлайновый анализ чувствительности в задаче о максимин-
ном пути.

В докладе предложен эффективный алгоритм для анализа чувствительно-
сти задачи о максиминном пути. Эта задача для заданных графа и пропуск-
ных способностей его ребер, а также заданных его вершин s и t заключается
в поиске st-пути, минимальная пропускная способность ребер которого при-
нимает максимальное значение. Анализ чувствительности оптимальных ре-
шений задач комбинаторной оптимизации— это поиск предельных изменений
стоимостей отдельных элементов задач, при которых рассматриваемое опти-
мальное решение остается оптимальным. Более конкретно, верхний допуск
элемента — это максимальное увеличение его стоимости, так что текущее оп-
тимальное решение остается таковым, а нижние допуски измеряют соответ-
ствующее уменьшение стоимости. В докладе предложен алгоритм со слож-
ностью O(m · α(m,n)) для вычисления всех допусков, где α(, ) — обратная
функция Аккермана. Для разреженных графов он улучшает ранее известную
сложность O(m+n · logn) алгоритма Рамасвами, Орлина и Чакраварти.

Перязев Николай Алексеевич (Иркутск).
Системы неравенств в теории мультиопераций.

Мультиоперации являются обобщением понятия операции и определяются
как отображение декартового произведения множества во множество всех его
подмножеств. В начале доклада введены все необходимые для понимания све-
дения из теории мультиопераций, включая понятия метаопераций над муль-
тиоперациями и понятие терма на множестве мультиопераций над множе-
ством метаопераций. В докладе дан обзор результатов автора методов реше-
ния систем неравенств с неизвестными в мультиоперациях на конечных мно-
жествах. Сначала рассмотрены простейшие неравенства с одним и многими
предметными неизвестными и константными параметрами. Затем рассмот-
рены неравенства, обе части которых задаются термально (формульно) над
множеством метаопераций суперпозиции и разрешимости. Для упрощения
нахождения мультиопераций, реализующих термы, применена техника про-
странственных булевых матриц, которая осуществляет сведение неравенств
в мультиоперациях к булевому уравнению. Более того, эта техника позволя-
ет разработать методы решения наиболее общих типов неравенств, а именно
функциональных, то есть где неизвестными являются мультиоперации и па-
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раметры произвольной мерности. Все методы решения различных неравенств
продемонстрированы на доступных для понимания примерах.

Попков Кирилл Андреевич, Редькин Николай Петрович, Романов
Дмитрий Сергеевич (Москва).
Развитие теории тестовой сложности логических схем, реализующих про-
извольные булевы функции.

В докладе дан обзор результатов по таким характеристикам длин мини-
мальных тестов для логических схем, реализующих произвольные булевы
функции, как оценки функций Шеннона длин тестов, оценки длин мини-
мальных тестов для почти всех булевых функций, оценки длин минимальных
тестов для каждой булевой функции.

Саргсян Ваге Гнелович (Ереван).
Наборы, k-свободные от сумм, в абелевых группах.

Пусть G— абелева группа, а k > 2 —целое число, и A1, . . . , Ak —непустые
подмножестваG. Набор (A1, . . . , Ak) называется k-свободным от сумм (сокра-
щенно k-НСС), если уравнение x1 + · · · + xk = 0 не имеет решений в наборе
(A1, . . . , Ak), где x1 ∈ A1, . . . , xk ∈ Ak. Семейство k-НСС в G обозначим через
Sk(G). Положим %k(G) = |A1|+ · · ·+ |Ak|.

С помощью техники, связанной с преобразованиями Фурье, получена
асимптотика логарифма числа k-НСС в G. Доказано, что log |Sk(G)| ∼ %k(G).

Набор (A1, . . . , Ak) ∈ Sk(G) назовем максимальным по мощности, ес-
ли он максимальный по сумме |A1| + · · · + |Ak|, и максимальным по
включению, если для любых i ∈ {1, . . . , k} и x ∈ G \ Ai набор
(A1, . . . , Ai−1, Ai ∪ {x}, Ai+1, . . . , Ak) /∈ SFCk(G). Изучена задача о макси-
мальном значении %k(G). В частности, определено максимальное значение
%k(G) для циклической группы Zn. Получены верхняя и нижняя оценки %k(G)
для абелевой группы G. Описана структура максимального по мощности (по
включению) набора, k-свободного от сумм, для произвольной циклической
группы.

Шуплецов Михаил Сергеевич (Москва).
О статической и динамической активности схем из разных классов.

В докладе рассмотрены функционалы сложности, оценивающие энергопо-
требление схем из различных классов функционального и проводящего типа.
Наиболее известными функционалами такого типа являются статическая ак-
тивность или мощность схемы, которая позволяет оценить статическое энер-
гопотребление схемы, и динамическая или переключательная активность схе-
мы, которая оценивает динамическое энергопотребление схемы, связанное с
переходными процессами в схеме. В докладе представлен ряд результатов оте-
чественных и зарубежных авторов, связанных с изучением указанных функ-
ционалов сложности. В том числе их известные верхние и нижние оценки
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как для схем, реализующих функции, встречающиеся в приложениях, так и
для соответствующих функций Шеннона. Кроме того, будут представлены
результаты о связи данных функционалов с другими функционалами слож-
ности схем и характеристиками булевых функций, реализуемых данными схе-
мами.
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